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I. INTRODUCTION

Accurate estimation of clothing pressure on the human
body is crucial to understand physical factors that influence
clothing comfort. Such a prediction requires the capability
of expressing contact pressure fields in terms of different
body sizes and types as well as garment size and material
properties. However, such contact scenarios are generally too
complex to be modeled by analytical methods. Experimen-
tation also has certain drawbacks since it does not provide
information about internal stresses, and precise measurement
of the contact pressure between a pair of curved soft bodies
is difficult.

Computational techniques are promising alternatives to
overcome the aforementioned challenges, and they have been
previously used to simulate clothing pressure. For instance,
Horiba et al. [1] recently used finite element analysis (FEA)
to simulate the underwear-induced pressure fields on the
human body. They also measured the pressure using sensors
placed at certain positions and observed a good match with
respect to the simulation results.

Despite their utility, the computational cost of simulation
techniques typically grows exponentially with the increasing
degrees of freedom in the models. Moreover, when contact
of multiple bodies is involved, most numerical techniques
suffer from further challenges such as significantly longer
computation durations due to the need for time stepping and
simulation failures due to instabilities. Hence, over the last
two decades, there have been continued efforts to incorporate
machine learning techniques into computational methods to
improve efficiency and stability. For example, for the rapid
prediction of stress distributions within human organs, Liang
et al. [2] used deep learning to develop a fast and accurate
metamodel replacing FEA.

The intricate anatomy of the human body may require
elaborate computational models with several thousand de-
grees of freedom to capture the deformation mechanics
accurately. Such large models inherently induce high compu-
tational costs and are likely to suffer from the aforementioned
numerical issues. The proposed study aims to address this
problem by developing a deformation model based on deep
neural networks trained with simulation data. First, a para-
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Fig. 1. Using a DNN-based metamodel to predict the clothing pressure
for different body and garment properties.

metric model generator is developed to automatically create
body and garment models. Then, the generated models are
fed to a physics-based simulator. After that, the developed
framework is used to collect a large amount of data for
systematic combinations of the input variables. Finally, the
dataset is used to train a deep neural network that maps the
input variables governing the body and garment properties
to the output pressure field on the body. Upon successful
completion of the project, we expect to achieve a very precise
and efficient model capable of simulating various clothing
scenarios. Such a tool has great potential to be utilized by
researchers, engineers, and designers working in the haptics
and fashion fields.

II. MODELING AND DATA GENERATION

A. Body and cloth modeling

To attain realistic 3D human body models, we use the
SMPL-X [3]. This tool is available as an add-on in Blender,
which is a free and open-source 3D modeling program that
we use to refine our meshes. We chose height, weight, and
gender as the three main variables governing the body shape.
For simplicity, we focus on the torso, which is automatically
isolated from more complex body parts (head, forearms, and
lower legs) using developed scripts (Fig. 2a).
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Fig. 2. 3D models used in clothing simulation: (a) Preprocessed and
remeshed SMPL-X body model taking height, weight, and gender as
parameters; (b) A sample t-shirt model generated by our in-house modeling
tool which takes size, stretch stiffness, bend stiffness, and density as the
input.

Coherent with our focus on the torso, we chose t-shirts
as a simple type of cloth. We built our own parametric
modeler, which is capable of generating t-shirt models for
different sizes and materials. The specific properties that can
be altered are selected as the size, stretch stiffness, bend
stiffness, and density (Fig. 2b). For prevalent fabric types, the
material properties typically cannot be altered independently.
Thus, we chose four common types of fabric (cotton, silk,
polyester, and wool) whose modeling properties have been
reported for Houdini Vellum [4].

B. Clothing simulation

Once the body and garment models are created, their
interaction needs to be analyzed. For this purpose, we use
Houdini Vellum, which is a simulation framework relying
on position-based dynamics (PBD). In PBD, particles repre-
senting the body and cloth are evaluated for deviations from
their constraints due to external influences (e.g., collisions
and gravity). Accordingly, particle positions are directly
manipulated instead of using traditional force equilibrium
calculations. This approach yields sufficiently realistic results
with reasonable computational cost.

In the digital environment, making the cloth worn by the
body requires specific strategies. We address this problem by
cutting the t-shirt into half and virtually sewing back the two
parts (Fig. 3a). With the initiation of contact, contact forces

Fig. 3. Clothing simulation via PBD: (a) Virtual sewing operation for the
t-shirt; (b) Deformed cloth and body meshes.

Fig. 4. Sample body stretch stress contours in (a) RGB and (b) black and
white color scales.

are applied on both cloth and body, causing them to deform
until an equilibrium state is reached (Fig. 3b).

C. Data processing

The Vellum framework is capable of providing stretch
stress contours as RGB color values per node (Fig. 4a),
where red and blue represent the highest and lowest val-
ues, respectively. We convert these contours into the black
and white color scale (Fig. 4b) to obtain a single-channel
distribution, which is more convenient to learn. To this end,
we first normalize the RGB values to the [0 1] range. Then,
we use the following formula to obtain the effective stress
value (σ) at each node:

σ =
R−B + 1

2
(1)

Here, R and B denote the red and blue values, respectively.

III. OUTLOOK

We are currently testing simple neural networks including
ResNet and DenseNet to learn the relationship between
the input variables and output pressure field. Next, we
will investigate more advanced DNN architectures such as
transformers. We train distinct models for the male and
female bodies to effectively learn the influence of height and
weight, which are continuous variables. Once we validate
the accuracy of the metamodels, we will provide them with
a graphical user interface which will be published as open
source. We will also explore different strategies reported in
the literature to use the resulting pressure fields for com-
fort estimation. Ultimately, we aim to evaluate the comfort
prediction capability of our models via user experiments.
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