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Predicting materials and their perceptual attributes from tactile signals
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I. INTRODUCTION

When humans interact with a natural surface through ex-
ploratory motions, such as sliding or pressing, a diverse range
of tactile signals is generated at the skin [1]. Through these
signals, humans gauge multi-dimensional attributes of the
surfaces, such as smoothness, coldness, and softness, which
results in material recognition (see Fig. 1a). However, how
the information from these tactile signals rapidly transforms
into meaningful perceptual attributes and subsequently into
material recognition within the human cognitive process
remains poorly understood. This limited understanding of
how the brain distills and processes information from ex-
ploratory motion to recognize textures poses a key challenge
in digitizing tactile information [2].

This research seeks to fill this research gap by identifying
materials and perceptual attributes from tactile signals—
recorded finger-surface interaction data—using Artificial In-
telligence (AI) models. While existing Al models demon-
strate impressive accuracy in classifying materials and can
provide some interpretability into their decision-making
processes,their underlying assumptions may not necessarily
align with human haptic perception. Our work introduces a
methodology that develops Al systems capable of not only
identifying materials from tactile signals but also mimicking
humans’ haptic perception process (see Fig. 1b).

Our approach involves developing three interconnected
models that progressively decode tactile information. Model
1 establishes the foundational mapping between raw tactile
signals and psychophysical sensation ratings, capturing the
initial stage of human perception. Building on this, Model
2 translates these attributes into material classifications,
mirroring higher-level cognitive processing. For comparison,
Model 3 implements an end-to-end approach that directly
associates tactile signals with material categories. This tripar-
tite architecture serves dual purposes: the combined Models
1 and 2 will simulate the sequential nature of human haptic
perception, while Model 3 will reveal the AI’s inherent clas-
sification capabilities without human perceptual constraints.

II. METHODS
A. Dataset

The tactile signals used in our study was obtained from
SENS3, an open-access multisensory dataset collected from
fifty different surfaces [3]. The data was collected using a
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Fig. 1. Illustration of the material recognition process in humans and

our algorithm. (a) Humans perceive tactile signals that convey multisensory
surface attributes, resulting in material recognition. (b) Our approach models
this process by developing three Al algorithms that identify materials from
tactile signals and mimic the underlying human tactile perception process.

multi-sensory apparatus equipped with an accelerometer, a
force sensor, a thermistor, a heat-flux sensor, an infrared po-
sition sensor, a camera, and a microphone. Two participants
explored these surfaces with their fingertips using various
actions, including static contact, pressing, and sliding. In
addition, psychophysical sensation data was collected from
13 participants who rated the surfaces in 8 perceptual di-
mensions, such as rough-smooth, flat-bumpy, sticky-slippery,
hot-cold, regular-irregular, fine-coarse, hard-soft, and wet-
dry, while freely interacting with them.

B. Feature extraction

We extracted features from the finger-surface interaction
data recorded during pressing, static contact, and sliding
exploratory actions to capture the intrinsic properties of
materials.

For pressing and lifting, we used the maximum indentation
depth and its rate of change, capturing the variation of the
indentation depth as a function of applied force. These fea-
tures reflect the material’s response when force is applied to
its surface. Additionally, the average difference in indentation
depth at the same applied force between the pressing stage
and the force removal stage was calculated as a feature.

For static contact, a 4-parameter logistic regression is
used to fit the recorded heatflux and skin temperature data,
and the resulting parameters—the initial temperature at time
zero, the steepness of the curve, the inflection point (where
the curvature changes direction), and the estimated heatflux
value at infinite contact time—were used as features.

For sliding, we extracted features in both the time and
frequency domains for the lateral force and the accelerome-
ter. In the time domain, the extracted features include mean,
standard deviation, root mean square (RMS), maximum
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value, skewness, kurtosis, and the friction coefficient. These
features describe the statistical and physical properties of
the force signal during sliding. In the frequency domain, we
computed features such as spectral centroid, spectral spread,
spectral roll-off, and spectral flatness.

C. Supervised machine learning models

To identify materials from tactile signals while mimicking
the human haptic perception process, we developed three
models. The first model (Model 1) mapped tactile signals to
psychophysical sensation ratings. The second model (Model
2) then mapped these ratings to material types. The third
model (Model 3) directly mapped tactile signals to material
types. Models 1 and 2 aimed to simulate the human haptic
perception process, while Model 3 tested the capabilities of
Al in classifying materials directly from tactile signals. The
combination of Model 1 and Model 2 reveals the decision-
making process of the Al model in material classification,
guided by human input. In contrast, Model 3 demonstrates
the decision-making process of the Al model when classify-
ing materials independently, without human guidance.

Models 1, 2, and 3 were selected from the following ma-
chine learning algorithms to achieve the highest prediction or
classification accuracy for the given task: K-Nearest Neigh-
bors (KNN), Bagging Classifier, Logistic Regression, Multi-
layer Perceptron classifier, Bernoulli Naive Bayes, Gaussian
Naive Bayes, Nearest Centroid, Random Forest, Support
Vector Machine, Gradient Boosting and Lasso Regression.

III. RESULTS AND DISCUSSION
A. Mapping tactile signals to psychophysical sensations

To explore the relationship between tactile signals and
psychophysical sensations, we used the features extracted
in Section II-B to predict the ratings for each pair of psy-
chophysical sensations. For this prediction task, we applied
regression algorithms, such as Lasso Regression (LR) and
Random Forest (RF). Prediction performance was evaluated
using the R-squared (R?) metric.

As shown in Table I, not all sensation ratings were accu-
rately predicted using our current data. Among the data types,
thermal data yielded the best performance, successfully pre-
dicting sensation pairs like hot-cold, hard-soft, and wet-dry.
The sliding data proved effective in accurately predicting
sticky-slippery and performed reasonably well for hard-soft
and wet-dry classifications. Pressing data also contributed,
especially in improving the prediction of hard-soft properties.
When all data were combined, the model could predict all
sensation pairs that were predictable using either data type
individually. Interestingly, most sensations related to rough-
ness, such as rough—smooth, flat-bumpy, regular—irregular,
and fine—coarse, were not accurately predicted from sliding
data, highlighting the need for further investigation.

B. Mapping psychophysical sensations to material types

This subsection focuses on evaluating the effectiveness of
our psychophysical sensation data in classifying materials.
It also aims to identify the optimal AI model that can best

TABLE I
THE R-SQUARED SCORE FOR THE REGRESSION. THE BEST POSSIBLE
SCORE IS 1.0, WHILE THE WORST IS 0.

Sensation Pairs Model | Pressing | Thermal | Sliding | All
Rough-Smooth LR 0 0.14 0 0
Rough-Smooth RF 0 0 0 0
Flat-Bumpy LR 0 0 0 0
Flat-Bumpy RF 0 0 0 0
Sticky-Slippery LR 0 0 0.66 0.66
Sticky-Slippery RF 0.16 0.46 0.84 0.82
Hot-Cold LR 0 0.96 0.12 0.97
Hot-Cold RF 0 0.95 0.19 0.91
Regular-Irregular LR 0 0 0 0
Regular-Irregular RF 0 0 0 0
Fine-Coarse LR 0 0 0 0.04
Fine-Coarse RF 0 0 0 0
Hard-Soft LR 0.40 0.71 0.53 0.93
Hard-Soft RF 0.56 0.92 0.61 0.96
Wet-Dry LR 0 0.79 0.36 0.83
Wet-Dry RF 0 0.82 0.29 0.63

capture the relationship between psychophysical sensations
and material types. As shown in the first column of Table II,
the collected sensation ratings were effective in predicting
material types. Among the models tested, Logistic Regres-
sion, MLP Classifier, and SVM demonstrated the highest
prediction accuracy.

TABLE I
THE ACCURACY (THE PROPORTION OF ALL CLASSIFICATIONS THAT ARE
CORRECTLY IDENTIFIED) FOR MATERIAL CLASSIFICATION.

Models Sensation to type | Tactile signals to type
KNN 0.8 0.7
BaggingClassifier 0.7 1
LogisticRegression 0.9 0.8
MLPClassifier 0.9 0.9
BernoulliNB 0.8 0.7
GaussianNB 0.8 0.8
NearestCentroid 0.7 0.7
RandomForest 0.7 1
SVM 0.9 0.8
GradientBoosting 0.8 0.7

C. Mapping tactile signals to material types

From Table II (2nd column), we can see that most Al
models achieved excellent accuracy in material classification
when tactile signal data was provided.

In conclusion, the results demonstrate that our models
have significant potential in predicting sensation ratings
and material classification. Moving forward, we will focus
on examining the differences between the models, feature
importance, and their decision-making processes.
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