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Human-in-the-Loop Optimization of Perceived
Realism of Multi-Modal Haptic Rendering

Under Conflicting Sensory Cues
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Abstract—During haptic rendering, a visual display and a haptic
interface are commonly utilized together to elicit multi-sensory
perception of a virtual object, through a combination and inte-
gration of force-related and movement-related cues. In this study,
we explore visual-haptic cue integration during multi-modal haptic
rendering under conflicting cues and propose a systematic means to
determine the optimal visual scaling for haptic manipulation that
maximizes the perceived realism of spring rendering for a given
haptic interface. We show that the parameters affecting visual-
haptic congruency can be effectively optimized through a qual-
itative feedback-based human-in-the-loop (HiL) optimization to
ensure a consistently high rating of perceived realism. Accordingly,
the multi-modal perception of users can be successfully enhanced
by solely modulating the visual feedback without altering the haptic
feedback, to make virtual environments feel stiffer or more compli-
ant, significantly extending the range of perceived stiffness levels
for a haptic interface. We extend our results to a group of indi-
viduals to capture the multi-dimensional psychometric field that
characterizes the cumulative effect of feedback modalities utilized
during sensory cue integration under conflicts. Our results not only
provide reliable estimates of just noticeable difference thresholds
for stiffness with and without visual scaling but also capture all the
prominent features of sensory cue integration, indicating weights
that are proportional to the congruency level of manipulated visual
signals. Overall, preference-based HiL optimization excels as a
systematic and efficient method of studying multi-modal perception
under conflicts.

Index Terms—Haptic rendering, multi-modal perception under
conflicts, perceived realism, preference-based human-in-the-loop
optimization, sensory integration, visual-haptic congruency.

I. INTRODUCTION

HUMANS receive real-world sensory cues through various
feedback channels and combine and/or integrate them to

form a robust perceptual model of the world. Sensory signals
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that are complementary (hence, non-redundant) are combined,
while redundant sensory signals are integrated to form a coher-
ent multi-sensory percept [1]. Bayesian models are commonly
utilized to model how these sensory signals are (partially) inte-
grated, providing insights into the neural mechanisms involved
in perceptual decision-making [2]. There exists strong evidence
in the literature that neural mechanisms over a population of
neurons implement sensory integration similar to the maximum
likelihood estimation (MLE) [1]. During sensory integration, a
percept is obtained by a weighted linear combination of redun-
dant sensory signals; if the weights are associated with signals
according to their (perceived) reliability, then the most reliable
percept is achieved [1], [3]; otherwise, the result is considered
suboptimal in terms of MLE. Moreover, as the reliability of a
signal is reduced, its weight in integration has been shown to
decrease, possibly leading to a change of the dominant sensory
modality that has the largest contribution in the percept [4], [5],
[6]. Furthermore, as the discrepancy among the signals becomes
large, the reliability of the multi-sensory estimate may become
less than that of an unimodal estimate, leading the discrepant
source to be vetoed, instead of being integrated [1], [5], [7], [8].

Since independent sensory cues are required for optimal
MLE-like integration behavior, its applicability for modeling
conflicting cues is limited. In particular, while the MLE model
is likely to stay valid for small and hard-to-detect discrepancies
along the dimension of interest, this model of sensory integration
fails to account for the breaking down of cross-modal interac-
tions, when the information provided by each modality is highly
conflicting [9], [10].

Several extensions of the MLE model exist in the literature
that can account for the partial integration of cues across a wide
range of inter-modal discrepancies and stimulus conditions [11],
[12]. For instance, [11] utilizes prior knowledge about the cor-
respondence between multi-modal cues when determining the
degree of integration, while the causal inference model [12]
considers possible causes of the underlying sensory events to
enable partial integration.

Haptic perception often involves the fusion of complemen-
tary force-related cues and movement-related cues. Moreover,
visual feedback commonly accompanies the haptic perception of
movement, providing additional movement-related cues known
to dominate other modalities under many circumstances [13],
[14]. During the integration of visual and haptic sensory inputs,
the percept has been shown to depend on each cue [1], [5], while
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Fig. 1. A schematic representation of visual-haptic sensory integration and
combination to form a coherent compliance percept. In the figure, τ denotes
the torque resulting from the rotation θ of the object. Symbol θh represents the
haptic perception of movement cues, while τh denotes the haptic perception of
force-related cues. The visual cues due to the scaled movement displayed on the
monitor are denoted by θv , while the scaling factor is captured by the C/D ratio.
Finally, Kp denotes the perceived stiffness formed by (partial) integration and
combination of multi-modal cues.

the integration process may be suboptimal from a maximum
reliability perspective [15], [16].

Haptic rendering is the bilateral process that makes the dy-
namics of computationally mediated virtual environments (VEs)
apparent to a human user through a haptic interface. Haptic
interfaces are commonly complemented with a visual display to
improve immersion levels. Haptic rendering aims to maximize
the perceived realism of the VEs by ensuring the perceived
similarity of the rendering with respect to the reference model;
however, high-fidelity rendering is restricted to a limited range of
VEs due to underlying hardware limitations, such as the limited
force output or resolution.

During a typical haptic rendering task, sensory information
provided by the haptic interface and the visual display include
both complementary and redundant cues. In softness percep-
tion, movement-related percepts have been found to be formed
through the integration of cues provided by both haptic and
visual modalities [15], as depicted in Fig. 1. Furthermore, it is
possible to induce a controlled discrepancy between haptic and
visual movement cues by introducing a scaling factor, called
control-to-display (C/D) ratio, to the visual feedback provided
during haptic rendering.

Haptic perception of a virtually mediated object under visual-
haptic congruency has been of considerable interest, since it has
been demonstrated that visual cues can override haptic feedback
in displacement-related tasks, indicating the potential of visual
manipulation to improve haptic rendering experiences [13].
Such approaches are commonly utilized for pseudo-haptics [17].
In the literature, it has been demonstrated that perceived com-
pliance/stiffness can be increased by scaling the visual dis-
placements [13], [18], [19], [20], [21], [22]. Similar approaches
have also been applied to other haptic rendering tasks, such as
rendering weight [14] and surface roughness [23], [24].

Overall, it is possible to capitalize on the multi-modal and
redundant nature of the movement-related cues to enhance the
perceived rendering range of any haptic interface by manipulat-
ing the visual cues. However, it remains an open challenge to
determine the proper level of visual scaling to achieve the most
realistic haptic rendering for a user. This goal necessitates an

understanding of the psychometric model of multi-modal haptic
rendering under conflicting sensory cues.

In this study, we explore the visual-haptic cue integration and
propose a systematic means to determine the optimal visual scal-
ing during haptic manipulation that maximizes the perceived re-
alism of multi-modal spring rendering. Our approach is rooted in
sample-efficient human-in-the-loop (HiL) optimization, where
the rendering parameters are iteratively updated based on par-
ticipants’ qualitative feedback.

We extend our results to a group of individuals to capture the
underlying multi-dimensional psychometric field that character-
izes the cumulative effects of feedback modalities utilized during
sensory integration under conflicting cues. Our results not only
provide reliable estimates of just noticeable difference (JND)
thresholds for stiffness under visual scaling but also capture
several prominent features of sensory integration.

Overall, we demonstrate that the HiL optimization approach
allows for the determination of appropriate haptic-visual param-
eters. This ensures a consistently high rating of perceived realism
of multi-modal rendering. Additionally, it provides a systematic
and efficient means to study multi-modal sensory integration
under conflicting cues.

II. RELATED WORK

The HiL setting where participants provide feedback in each
trial is commonly employed by standard methods of classical
psychophysics, such as the method of constant stimuli and the
method of limits. However, these studies are not well-suited for
evaluating stimuli with more than one dimension because the
number of trials grows exponentially with the number of dimen-
sions and the number of points per dimension [25]. Accordingly,
several adaptive techniques, predominantly based on Bayesian
methods, have been developed to achieve similar accuracy with
classical psychophysics methods while using fewer trials [26].

Bayesian optimization is a global optimization approach
commonly employed in studies involving humans due to its
sample efficiency [27]. Bayesian optimization approaches have
been used for psychophysics studies [28], [29], [30], [31], [32],
[33], [34], [35], [36], as well as for optimization of assistive
robotic devices [37], [38], [39], [40], for which the evaluation
of optimization metrics is costly or the number of trials is con-
strained by human involvement. Bayesian optimization methods
can be loosely categorized as parametric and non-parametric
approaches.

A. Parametric Approaches

The well-known adaptive methods, such as QUEST [28], and
Psi [29], rely on the assumption that a parametric model for
the psychometric function consistent with Weber’s law exists.
These parametric approaches assume that the stimulus varies
on only one dimension and utilize a Bayesian update strategy
to achieve sample efficiency. However, the extension of these
methods to multi-dimensional stimuli is limited, as they eval-
uate any additional dimensions independently resulting in an
inefficient search strategy over one-dimensional slices of the
multi-dimensional psychometric field.
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QUEST+ [31] and Psi-marginal [30] are more general para-
metric approaches that support multi-dimensional models, but
they still require the parametric form of the psychometric field
to be specified a priori. On the other hand, the extension of
one-dimensional psychometric curves to multi-dimensional psy-
chometric fields is not straightforward, as there may exist nonlin-
ear interactions between the additional variables and saturation
behavior at low and high intensity levels [41].

Furthermore, since all parametric methods strongly depend
on the model introduced prior to data collection, the conclusions
that can be drawn from these approaches become limited if the
data violate the underlying assumptions of the selected model.

B. Non-Parametric Approaches

Non-parametric approaches have been introduced to remove
strong assumptions about the shape of the multi-dimensional
psychometric fields, by modeling the psychometric function
using a general approximator, such as a stochastic process. In
most cases, a Gaussian process (GP) serves as a sample-efficient
non-parametric model for complex functions [34], [35]. Further-
more, non-parametric approaches replace dense sampling with
efficient active learning schemes, significantly improving the
applicability of these methods for psychometric studies with
multivariate stimulus settings [32], [33], [34], [35], [36].

The classical implementation of GP-based Bayesian opti-
mization has been developed for quantitative metrics and is
not directly applicable to qualitative evaluations. On the other
hand, psychophysical studies are dominantly based on “yes/no”
type classification tasks and most HiL optimization studies rely
on qualitative comparative feedback from users to enhance the
reliability of subjective metrics [42].

GP-based Bayesian optimization approaches have been ex-
tended to active learning with classifications instead of quantita-
tive measurements [43], [44], [45]. For instance, GPs for binary
classifications with “yes/no” type feedback have been intro-
duced in [43], while this qualitative feedback-based method has
been extended to ordinal classifications and pairwise preferences
in [45]. These GP-based Bayesian optimization approaches have
been applied to psychophysics [34], [35], [41], [46], [47] and
HiL optimization applications [48], [49], [50], [51].

Fewer studies use preference-driven optimization for haptic
rendering [52] and texture generation [53]. Catkin et al. [52]
proposed preference-based HiL optimization for spring and
friction rendering, showing its effectiveness in capturing user
preferences and customizing parameters to maximize perceived
realism. They demonstrated that HiL optimization provides
an efficient way to study the effects of haptic parameters on
perceived realism, even in high-dimensional spaces.

In this study, we utilize a non-parametric Bayesian opti-
mization approach, as this selection allows us to model the
multi-dimensional psychometric field between the rendering
parameters and perceived realism without assuming a fixed para-
metric form. Our work is built upon the existing GP-based HiL
optimization approach presented in [48], [52], since GP-based
models are multi-dimensional by default and are flexible enough
to model correct saturation behaviors.

While previous non-parametric psychophysical studies used
either binary classifications [34], [41] or pairwise prefer-
ences [35], [47] as the qualitative feedback from the users, in this
study, we extend this methodology to use a wider range of classi-
fications to get more information from the user in each trial, such
that we can build a more general and sample-efficient method.
Our study significantly extends and refines these approaches to
suit multi-modal haptic rendering under visual-haptic incongru-
ency and provides insight into multi-modal sensory integration
by capturing the underlying psychometric field and perception
thresholds. The characterized psychometric field models the
cumulative effect of feedback modalities on perceived realism
during sensory integration of conflicting cues.

III. QUALITATIVE FEEDBACK-BASED HIL OPTIMIZATION

The HiL optimization aims to learn a quantified relationship
between the rendering parameters and user perception through a
GP-based latent function. The GP-based latent function models
users’ perception without making strong parametric assump-
tions. As users provide more qualitative feedback, such as
classifications and comparisons, the GP-based latent function is
updated according to Bayes’ theorem, to capture their perception
more accurately. During the HiL experiments, the GP-based
latent function is used within a Bayesian optimization frame-
work to efficiently learn the relationship by employing informed
sampling techniques.

After posterior GP models of all users are trained, a generaliz-
able latent perception model can be constructed by statistically
averaging these posterior GP models, and a probabilistic rela-
tionship between the rendering parameters and corresponding
qualitative feedback outcomes can be derived from the averaged
posterior GP-based latent function to extract psychophysical
thresholds of interest.

While a detailed mathematical model of the HiL optimiza-
tion method based on qualitative feedback is presented in
Appendix A, an overview can be provided as follows:

1) Latent Function Modeling: During the HiL optimization,
subjects form a perception of the stiffnessKp1 andKp2 from two
different visual-haptic renderings and Kpref

from the reference
rendering. Users are asked to evaluate the stiffness of renderings
based on their perceived similarity with respect to the reference.
Our experiments collect two ordinal classifications, qo1 and
qo2 , and one pairwise preference, qp, at each iteration. Users
provide ordinal classification based on the similarity between a
rendering and the reference, and they give a pairwise comparison
between two renderings based on which one is more similar to
the reference. Although pairwise comparisons provide no extra
information when subjects classify parameters into separate
categories, pairwise preferences are useful to capture small
differences if two parameters are classified in the same category.

We train a GP-based latent function f(x) to learn the rela-
tionship between rendering parameters x = (K,C/D ratio), and
users’ perceived similarity by using the collected qualitative
feedback data D, where K is the rendered stiffness and C/D
ratio parametrizes the visual scaling. The latent function is
modeled such that higher perceived similarity results in higher
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Fig. 2. Human decision model for qualitative feedback.

latent function scores. The prior probability of the latent function
P (f(x)) is modeled using a normalized GP model.

We know that human decisions are not perfectly consistent;
hence, this inconsistency is modeled by white noise interference
to the decision process, as depicted with noises εo and εp
in Fig. 2. The white noise aims to capture the limitations of
human sensitivity and any random distractions that may take
place during the experiment. Given that humans are typically
more consistent while making pairwise preferences compared
to ordinal classifications [50], distinct white noise parameters
are used for pairwise preferences and ordinal classifications.

The users’ ordinal classification decisions are modeled ac-
cording to the threshold values between where the noise-
interfered version of latent scores yo1 and yo2 fall. The binary
classification used in [41] is a special case of ordinal classifica-
tion with two categories separated by a threshold at zero. We pre-
ferred to apply three ordinal categories to enforce more reward
to renderings perceived similar to reference and more penalty
to renderings with high perceived distinctiveness. Similarly, the
pairwise preference is modeled according to the noise-interfered
version of the difference between latent function scores. When
the noise-added difference is above zero, the user perceives the
stiffness of the first renderingKp1 to be more similar to reference
rendering Kpref

.
2) Posterior Latent Function and Bayesian Inference: As the

user provides more qualitative feedback, the latent function is
updated according to Bayes’ theorem

P (f(x)|D) ∝ P (D|f(x))P (f(x)) (1)

allowing it to capture the user’s perception more precisely.
The aim of acquiring the posterior distribution of f(x) is to

enable predictions of the latent function scores f(x∗) for any
feasible arbitrary rendering parameter x∗. However, since the
probability of qualitative feedback is not Gaussian, the pos-
terior distribution of f(x∗) is not analytically tractable using
the posterior distribution of f(x). Accordingly, the Laplace
method is used to approximate the posterior distribution of f(x)
as a Gaussian distribution such that the posterior distribution
f(x∗) is also inferred as a Gaussian. Utilizing this commonly
adopted method for posterior approximation, it is possible to

Algorithm 1: Pseudo-code for HiL Optimization with
Qualitative Feedback.

initiate S: Parameter space, f ∼ GP (μ0, σ0): GP prior, M :
Space-filling iteration number, N : Total iteration number

1: for i=1, 2, . . . , N do
2: if i ≤ M then
3: Randomly select two distinct points from S
4: else
5: Select two parameters

xi1,2 :=argmaxx∈S (αUCB(x)i−1)
6: Observe qualitative feedback (qoi1 , qoi2 and qpi

)
7: Update posterior distribution of latent function

model f

make predictions for Bayesian optimization and extend the
probabilistic derivations to capture psychophysical estimations
based on human perception [44], [48], [49], [50].

3) Bayesian Optimization: The Bayesian optimization uses
the GP model of the latent function as defined in the pre-
vious subsection. In each iteration, a query consisting of a
two-parameter set is sampled by using the Upper Confidence
Bound (UCB) acquisition function

αUCB(x∗) = μ(x∗) + c σ(x∗) (2)

where μ(x∗) denotes the mean of f(x∗), σ(x∗), is the standard
deviation of the posterior probability distribution of f(x∗),
and c is a constant hyper-parameter used to define the explo-
ration/exploitation ratio. As c increases (decreases) the weight of
the standard deviation increases (decreases) thus, the sampling
algorithm focuses more on exploration (exploitation). To sam-
ple from different regions, we also impose a condition during
the selection of the second parameter set, such that the prior
covariance should be smaller than 0.2.

Algorithm 1 presents the basic steps at each iteration: The first
M iterations are conducted to explore the search space via space-
filling methods (Lines 1–3); i.e., random uniform sampling.
Then, for the next N −M iterations, the algorithm suggests
two parameter sets using the most promising points according to
the acquisition function (Line 5). Next, the suggested parameter
sets are used in the visual-haptic rendering with the left and
right knobs. After the subject tries the rendered parameters,
qualitative feedback regarding the trial is transmitted to the
algorithm (Line 6). Lastly, the algorithm updates its GP posterior
according to the qualitative feedback data (Line 7). We use the
GP update procedure for the parameter inference as in [49].

4) Aggregating Gaussian Process and Extracting Psy-
chophysical Thresholds: After the data collection, the trained
posterior models are used to create an averaged posterior GP
model to form a general perception model. Then, this model is
used to infer the classification and comparison decisions of users
throughout the bimodal stimuli space.

a) Averaged Gaussian Process Posterior: The averaged
posterior GP model is computed from the individual posterior
GPs of the multi-modal experiment. We treat each participant’s
posterior GP results as independent and identically distributed
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measurements over the bimodal space and use them to obtain
the average perceived similarity posterior model as follows

f̄∗|Dtot
∼ GP

(
E(f̄∗|Dtot

), V ar(f̄∗|Dtot
)
)

withE(f̄∗|Dtot
) =

1

n

n∑
s=0

E(fs∗|Ds
)

V ar(f̄∗|Dtot
) =

1

n2

n∑
s=0

V ar(fs∗|Ds
) (3)

where n denotes the number of subjects, while Dtot represents
qualitative feedback data collected from all participants, Ds,
represents individual qualitative feedback data, and fs repre-
sents individual perceived similarity scores with respect to the
reference.

b) Just Noticeable Difference Thresholds: Utilizing the
averaged GP posterior model, one can estimate the probability
of a participant preferring a rendered parameter set instead of
the reference parameter set. The probability model quantifies
the probability of each parameter set being as effective as the
reference, in terms of perceived similarity to the reference. Let
f̄∗|Dtot

be the averaged posterior distribution of latent function
f for arbitrary parameter set x∗, where f̄∗|Dtot

is calculated
according to (3). Similarly, let f̄ref |Dtot

be the averaged poste-
rior distribution of latent function for reference parameter xref .
Then, the probability of a participant preferring the arbitrary
parameter x∗ instead of reference can be calculated as

P (x∗ � xref |Dtot) = Φ

⎛
⎝ E(f̄∗|qtot − f̄ref |Dtot

)√
V ar(f̄∗|Dtot

− f̄ref |Dtot
) + c2p

⎞
⎠

(4)
where E(f̄∗|Dtot

−f̄ref |Dtot
) is the difference between the mean

values of the posterior distributions, V ar(f̄∗|Dtot
−f̄ref |Dtot

)
denotes the variance of the difference between f̄∗|Dtot

and
f̄ref |Dtot

, and cp is the coefficient used in defining the standard
deviation of the white noise interference in (11).

Preferring the rendered parameter set over the reference indi-
cates that a participant either assigns a higher perceived similar-
ity score to the rendered parameter set compared to the reference
or is unable to distinguish between the rendered parameter set
and the reference; hence, randomly selects one of the options. If
the probabilities of selecting the rendered parameter set and the
reference are equal when the participants cannot differentiate
between the two options, and if we assume that the participants
always prefer the reference when they notice a difference be-
tween the two choices, then utilizing the Bayesian inference, the
probability of participants preferring the reference by detecting
the difference can be computed as 1− 2P (x∗ � xref |qtot).

To select a confidence interval where participants prefer the
reference by detecting the difference with respect to 50% prob-
ability, one can select the JND threshold at 25%. Accordingly,
when the parameter set falls below this threshold, the parameter
set can be assumed to have a noticeable difference with a
probability over 50%.

Fig. 3. Three identical haptic interfaces and a visual display.

IV. HUMAN-IN-THE-LOOP OPTIMIZATION EXPERIMENTS

A. Participants

Twelve participants (9 males and 3 females) with an av-
erage age of 25.91 ± 1.16 years participated in this study.
Among the participants, only one person was left-handed. No
participant had any known sensory-motor disability. Before
the experiments, all participants signed an informed consent
form approved by the Institutional Review Board of Sabanci
University (Protocol No: FENS-2024-10). None of the partici-
pants had significant prior experience with haptic interfaces and
psychophysical studies.

B. Apparatus

The experiment setup, shown in Fig. 3, consists of three
identical haptic interfaces and a visual display. Equal-sized
knob-shaped 3D-printed handles were used as the end-effector
of the haptic interfaces. The visual display was utilized for the
visual-haptic congruency experiments, such that the visual feed-
back of all knob rotations was made available on the monitor,
while the view of the haptic interfaces was kept hidden from the
participants.

Each haptic interface consists of a direct-drive Maxon RE40
brushed DC motor equipped with a 1024 count/rev encoder and
driven in the current mode with a MaxPos amplifier through
an EtherCAT interface. Open-loop impedance control was im-
plemented in real-time at 1 kHz through the Matlab RealTime
environment.

A torsional spring with stiffness value K was rendered ac-
cording to Hooke’s law, τ = K θ, where τ denotes the reference
torque resulting from the rotation of the end-effector θ. The stiff-
ness range of [0.1, 0.4] Nm/rad was utilized in the experiments
and mapped to the normalized range of [0, 1] during optimiza-
tion. The reference stiffness was 0.2 N-m/rad, corresponding to
the normalized stiffness value of 0.5.
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Fig. 4. Knob rotations of the haptic interfaces and corresponding displayed
visual rotations for the different C/D ratios.

C. Control-to-Display Ratio and Visual/Haptic Stiffness

The perceived stiffness of virtual torsional springs is stud-
ied by controlling the visual scaling factor, called control-to-
display (C/D) ratio [14] of the knob rotations. The method
involves applying a visual scaling to the actual knob rotation
of the haptic interface and allowing visual feedback only from
the monitor, as depicted in Fig. 4.

If the C/D ratio is less (more) than one, then the visualized
movement is attenuated (amplified), requiring the user to rotate
the knob more (less) to observe the same amount of rotation on
the screen compared to higher (lower) C/D ratios.

The C/D ratio range of [0.5, 2] is considered, such that two
times visual amplification or reduction can be provided for a
given knob rotation. During the optimization, C/D ratios are
normalized to [0, 1]. The inverse of the following mapping is
applied to normalize the C/D ratios:C/Dratio = 2(2α−1), where
α denotes the normalized C/D ratio.

Consistent with the C/D ratio definition, we define visual
stiffness Kv as the idealized case when only the visual move-
ment cues are used with haptic force cues to form a stiffness
perception, such thatKv � Δτh/Δθv . Similarly, we also define
haptic stiffness Kh as the unimodal case when only the haptic
movement cues are used with haptic force cues to form a stiffness
perception, such that Kh � Δτh/Δθh.

D. Hypotheses

We have designed an experiment to test the validity of the
following hypotheses.

H1 The perception of users can be successfully manipulated
by changing the visual modality without altering the
rendered stiffness parameter, to make VEs feel stiffer or
more compliant. It is possible to increase the perceived
compliance (stiffness) via amplification (attenuation) of
the visual motion feedback.

H2 The visual-haptic incongruency limits the range of vi-
sual scaling for which the perception of users can be
manipulated with high perceived realism. To determine
these limits, the JND thresholds for stiffness and C/D

ratio can be estimated through the HiL optimization
experiments.

H3 Movement-related cues from the haptics modality and
visual cues are (partially) integrated through a weighted
linear combination of redundant sensory cues. Accord-
ingly, the perceived stiffness is formed as a linear com-
bination of visual stiffness Kv and haptic stiffness Kh

values. Furthermore, as the incongruency level increases,
the contribution of visual cues and their weights in the
stiffness perception decreases.

E. Experimental Procedure

1) Setup and Overview: All volunteers participated in the
experiment through a single sitting and used their dominant
hands. To minimize the effects of auditory cues, participants
wore headsets playing pink noise. During the experiment, par-
ticipants were instructed that the knobs control the visual display
and asked to interact with the three knobs in a similar manner.
Participants were allowed to explore these systems as they
preferred. To ensure that the visual cues were only provided from
the display, all three haptic interfaces were covered throughout
the experiment.

During all sessions, the middle knob was used as
the reference rendering that maintained the same stiffness
value Kref = 0.2 Nm/rad. The visual feedback for the reference
(middle) knob corresponded exactly to the physical rotation of
the haptic interface (C/D ratio = 1), ensuring that the visual rep-
resentation accurately reflected the actual displacement, without
introducing any visual manipulation.

2) Procedure: Participants were asked to compare the stiff-
ness of torsional springs rendered by three identical haptic
interfaces, each coupled to the visual feedback displayed on the
monitor. Participants provided feedback based on the perceived
similarity to the reference. This task involved an ordinal classi-
fication and a pairwise comparison to evaluate the similarity of
the stiffness renderings.

All optimization trials followed the same experimental proce-
dure for each trial, as depicted in Fig. 5. In each trial, two differ-
ent sets of parameters called the query, were sampled according
to the UCB acquisition function (Query Generation in Fig. 5).
Then, the participants were presented with the parameters of
the query through the left and right haptic interfaces, while
the reference model was rendered by the haptic interface in the
middle (Execution in Fig. 5). Participants were asked to interact
with the reference haptic interface at the beginning of each trial.
After that, they were free to interact with the haptic interfaces
on the left and right and go back to the reference, in any order
they preferred. They were instructed to apply similar trajectories
to all three knobs, ensuring they stay within the predetermined
displacement range presented via the GUI as visual constraints.
There was no time limitation for the trials.

Following the interactions with the haptic interfaces, partici-
pants were asked to compare the left and right knobs against the
reference knob. Participants provided their responses to the two
questions, based on their internal comparison (User Feedback
in Fig. 5).
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Fig. 5. A schematic representation of the preference-based HiL optimization.

Fig. 6. A schematic representation of the experimental procedure.

For the first question, they evaluated the similarity of the feel
of the right/left knobs, in comparison to the reference knob.
For the ordinal classifications, they were asked to answer the
question “How do you feel when you interact with the knobs
in comparison to the reference knob?” by selecting one of the
following responses:
� Not Different: the left (right) knob does not feel noticeably

different compared to the reference knob.
� Different: the left (right) knob has a noticeably different

feeling compared to the reference knob.
� Very Different: the left (right) knob has a significantly

different feeling compared to the reference knob.
For the second question, they performed a pairwise compari-

son of the feelings of the left and right knobs with the reference
knob and were asked to provide qualitative pairwise feedback
by answering “Which knob do you prefer?” through one of the
following responses:
� Left: the left knob feels more similar to the reference knob

than the right knob.
� Right: the right knob feels more similar to the reference

knob than the left knob.
� Equal: an equal level of similarity/dissimilarity exists for

the left and right knobs compared to the reference knob.
Participants submitted their preferences through a GUI. Fol-

lowing this, the participants’ preferences were utilized to update
the GP for the perceived similarity with respect to the reference
(Posterior Model Update in Fig. 5).

F. Sessions

The experiment was organized into three sessions: multi-
modal optimization, constant stiffness optimization, and cross-
comparison sessions. The constant stiffness optimization session
was designed to validate the findings acquired from the multi-
modal optimization.

Fig. 6 depicts the experimental flow: Each experiment started
with a warm-up and ended with a cross-comparison. Ten-minute
breaks were scheduled between the sessions and the volunteers

were also allowed to take a break whenever they wanted. Addi-
tionally, the order of the multi-modal optimization (Session A)
and the constant stiffness optimization (Session B) sessions, as
well as the order of the low- and high-stiffness experiments,
were randomized for each participant to prevent any patterns or
learning effects during the experiments.

1) Warm-Up: The warm-up took about five minutes and was
used to familiarize the volunteers with the haptic rendering task
and the operation of the visual-haptic interface. During warm-
up, all subjects were provided with at least six queries with
12 different renderings, while additional queries were provided
until volunteers felt ready.

2) Constant Stiffness Optimization: The constant stiffness
optimization sessions were designed to optimize the C/D ratio
while keeping the stiffness parameter fixed at a predetermined
value. The constant stiffness optimization consisted of two
sub-sessions, denoted as high- and low-stiffness optimizations.
These sub-sessions were configured to provide stiffness levels
approximately 1.3 times higher and 1.3 times lower than the
reference stiffness value of 0.2 Nm/rad, respectively.

The constant stiffness optimization sessions consisted of 12
trials for the low-stiffness and 12 trials for the high-stiffness
experiments. It took a total of 36 iterations, including six trials
for the low-stiffness posterior model validation and six trials
for the high-stiffness posterior model validation. The constant
stiffness optimization sessions with posterior model validations
lasted about 30 minutes.

3) Multi-Modal Optimization: During the multi-modal op-
timization session, both the C/D ratio and the stiffness
were concurrently optimized to explore the entire parame-
ter space encompassing the C/D ratio and rendered stiffness
variables.

The multi-modal optimization session consisted of 30 trials
with 24 optimization trials and six posterior model validation
trials. The multi-modal optimization session with the posterior
model validation trials took about 30 minutes. The number of
trials and the hyper-parameters used in the optimization were
empirically decided based on pilot studies.
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Fig. 7. Sample prior and posterior models (captured by their mean and standard deviation) for perceived similarity depicted for the one-dimensional experiments,
where the stiffness was kept constant at 0.151 N-m/rad for low and 0.262 N-m/rad for high stiffness cases, and the C/D parameter was varied. The green, orange,
and red points mark a local maximum, an intermediate point, and a local minimum of the posterior, representing equidistant perceived similarity scores in the
search space including local maximum and local minimum levels.

Fig. 8. The progression of the posterior model of multi-modal perceived similarity depicted at various trials of the HiL optimization for a participant. The first row
captures the mean, while the second row presents the standard deviation of the posterior model. The green, orange, and red points mark the equidistant perceived
similarity scores in the search space including the local maximum, intermediate, and local minimum values.

4) Posterior Model Validation: Posterior model validations
were conducted after each constant stiffness optimization ses-
sion and the multi-modal optimization session. Posterior model
validations were performed by comparing non-deterministically
selected test parameters that are representative of parameters
resulting in a local minimum, a local maximum, and an in-
termediate perceived similarity score of the posterior model.
The test parameters were rendered through the left or right
knobs and compared to each other with respect to the reference
knob.

Participants were asked to perform six pairwise comparisons
of the local maximum, intermediate, and local minimum param-
eter sets for two blind orderings, for which the expected ordering
was 1-local maximum, 2-intermediate, and 3-local minimum, as
depicted in Figs. 7 and 8. These validation sessions were aimed
to confirm the reliability of the posterior model derived through
preference-based learning.

5) Cross-Comparison: After the completion of all optimiza-
tion sessions, cross-comparison trials were conducted to test
if participants could distinguish their optimized parameters
from the reference parameter. During the cross-comparison,
participants were asked to compare two rendering models with

each other presented by the left and right knobs with respect to
their similarity to the reference at the middle knob.

Participants followed the same procedure with the optimiza-
tion sessions to provide pairwise and ordinal feedback as in
Section IV-E2. The queries were not generated by the acquisition
function, instead, the optimized parameter sets for the low-,
high-stiffness, and multi-modal settings, together with the refer-
ence parameters, were utilized. Each comparison was repeated
two times for each parameter set, and all comparisons were
completed in 12 trials, resulting in six pairwise comparisons
and six ordinal classifications for a participant. The cross-
comparison session lasted about 10 minutes.

G. Data Analysis

To check for statistically significant differences in the or-
dinal classifications of the low-stiffness, high-stiffness, and
multi-modal optimized parameter sets tested during the cross-
comparison sessions, first, the classification outcomes of
participants were recategorized into a binary variable, in which
either the participant perceived the rendering as similar to
the reference or different from the reference, with the latter
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combining the different and very different categories. Then,
a logit model was utilized for the analysis as the dependent
variable was derived from the binary classification outcomes.

The explanatory variables of the logit model consist of the type
of optimal parameter sets (low-stiffness optimal, high-stiffness
optimal, multi-modal optimal) and an additional handedness
variable introduced to capture any systematic difference in the
propensity to consider the left knob as similar to the reference,
relative to the right knob. The handedness variable ensures
the model accounts for potential asymmetries in participants’
perception between the left and right knobs.

The logit model captures the probability of a participant
perceiving the rendering as similar to the reference as a function
of the rendering parameter sets and the knob position. The logit
model also includes an intercept, which captures the average
effect of all variables not explicitly included in the model that
contribute to the propensity rate of the rendering to be catego-
rized as similar to the reference. Given the setup of the model, the
intercept effectively corresponds to the probability of selecting
similar when the rendering parameter set and the knob position
are at their reference values.

To account for the dependency within each participant’s ob-
servations due to the repeated-measures nature of the experiment
design, cluster-robust standard errors were used. Cluster-robust
errors adjust for the intra-cluster correlation by treating each
participant as a cluster, ensuring that the standard errors properly
reflect the variability across the participants rather than within
individuals, providing more reliable inferences.

For the posterior validation, the performance of all three
learned perception models was studied by confusion matrices.
The parameters corresponding to the local maximum, local
minimum, and intermediate values of the learned GP posterior
model, along with the user ordering, were utilized for multi-class
classification.

V. RESULTS

A. HiL Optimizations

The GP prior and posterior models, captured by their mean
and standard deviation, for a sample participant during the low-
and high-stiffness rendering experiments are presented in Fig. 7.
The progressions of the GP over the trials during multi-modal
experiments for a sample participant are presented in Fig. 8. The
last columns of Figs. 7(a) and (b) and 8 also present the orderings
of the participants, corresponding to the local maximum (1),
intermediate (2), and local minimum (3) of the posterior.

The average optimized C/D ratio of the 12 volunteers for the
low-stiffness setting is determined as 0.77 ± 0.12, while the
average C/D value for the high-stiffness setting is identified as
1.35 ± 0.18. The average stiffness and C/D ratio values of the
multi-modal setting are determined as 0.20± 0.03 (Nm/rad) and
1.06 ± 0.25, respectively.

B. Posterior Model Validation

To validate the optimized perception models, the participants
ordered the representative local minimum, intermediate, and

TABLE I
RESULTS OF THE STATISTICAL ANALYSIS FOR CROSS-COMPARISONS

local maximum values of the posterior models. GP orderings
were considered the ground truth and were used along with blind
orderings of the participants for the multi-class classification.
The accuracy of the orderings is presented as confusion matrices
in Fig. 9. Each cell in the matrices indicates the normalized
number of correct classifications. Since the participants were
allowed to indicate ties, the rows/columns of the confusion
matrices may not sum to one. The dominance of the diagonals
shows how well the Gaussian posterior model can capture the
underlying perception model.

C. Cross-Comparison

As a result of the cross-comparison sessions, each optimal
parameter set was classified 72 times. The optimal parameter
sets were labeled as similar to the reference parameter set for
43.1%, 48.6%, and 68.1% of these trials for the low-stiffness,
high-stiffness, and multi-modal cases, respectively.

Table I presents the parameter estimates according to the
logit model detailed in Section IV-G, with their corresponding
cluster-robust standard errors and the t-statistics, calculated as
the parameter estimates divided by their respective standard er-
rors. The last column denotes the statistical significance together
with the corresponding confidence levels.

The results for the intercept show that the baseline probability
of a participant selecting a knob with the reference parameters
being similar to the reference rendering is statistically significant
at the 1% confidence level, with an odds ratio of approximately
3.8 to 1.

The results for the low-stiffness optimal parameter sets indi-
cate a statistical significance at the 1% confidence level. Hence,
there exists strong evidence indicating that the null hypothesis—
the low stiffness and the reference stiffness renderings are per-
ceived as similar—can be rejected.

Similarly, the results for the high-stiffness optimal parameter
sets indicate a statistical significance at the 5% confidence
level. Hence, there exists sufficient evidence indicating the
null hypothesis—the high stiffness and the reference stiffness
renderings are perceived as similar—can be rejected.

The results for the multi-modal optimized parameter sets
do not indicate any statistical significance. Hence, the null
hypothesis—-the multi-modal stiffness and reference stiffness
rendering are perceived as similar—-cannot be rejected.

Finally, the results for the handedness do not indicate any
statistical significance; hence, the null hypothesis of their equiv-
alence cannot be rejected.
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Fig. 9. Confusion matrices of the posterior model validation.

Fig. 10. (a) The mean values of the averaged GP posterior, for which the red regions represent higher perceived similarity scores. The stars depict the mean
parameter values for the low stiffness, high stiffness, and multi-modal optimizations. (b) The standard deviation of the averaged GP posterior, for which higher
values are attained in the red regions, where the algorithm samples less frequently. The red regions are sampled less frequently since the algorithm estimates these
regions to have lower perceived similarity scores than the blue regions in the standard deviation plot. (c) The probability map of selecting a parameter set in pairwise
comparison with respect to the reference. The region inside the JND curve captures the parameters that can be used instead of the reference parameters. The lines
on the figure are used to analyze the effect of the C/D ratio over the perceived stiffness.

D. Averaged Gaussian Process Posterior

The averaged multi-modal perception model, computed ac-
cording to Section III-4a, which provides the underlying per-
ceived similarity ratings for 12 participants is presented in
Fig. 10. In particular, Fig. 10(a) presents the mean value plot
annotated with the average values of the high, low, and multi-
modal stiffness optimization results, while Fig. 10(b) presents
the standard deviation of the averaged GP posterior.

E. Just Noticeable Difference Thresholds

The estimated JND thresholds for perceived stiffness are
depicted in Fig. 10(c). Fig. 10(c) presents a re-interpretation of
Fig. 10(a) and (b) through the probability mapping discussed in
Section III-4b. The contours in this figure capture the probability
of the rendered parameters being indistinguishable from the
reference, as well as the boundary of JND.1 The average values
for the low, high, and multi-modal stiffness optimization results
are also annotated with stars in the figure.

1Probabilities exceeding 50% in Fig. 10(c) are artifacts of the slight mismatch
between the multi-modal optimized and the reference stiffness.

VI. DISCUSSION

In this section, we elaborate on each hypothesis presented in
Section IV-D and compare our results with the related studies in
the literature.

A. Hypothesis 1

The preference-based learning algorithm simultaneously con-
structs a Gaussian latent model of the perceived similarity of
each individual, as depicted in Figs. 7 and 8. Accordingly, it
becomes possible to assign a perception score to any parameter
set within the design space employing Gaussian regression, even
if that particular parameter set has not been directly assessed.

The posterior model validation results indicate that the
GP model successfully captures the perceived similarity of
the participants, as evidenced by the diagonal dominance in
the confusion matrices in Fig. 9. These results demonstrate the
efficiency of the GP in modeling the latent perception model,
while concurrently optimizing the rendering model parameters.

Low standard deviations in the posterior plots indicate ad-
equate convergence of the GP models. Compared with the
standard deviation of the averaged model prior, the standard
deviation of the averaged model posterior has reduced by more
than 80% in the blue regions, indicating a high information
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gain. Accordingly, the blue dominant region Fig. 10(b) indi-
cates where the averaged multi-modal perception model can be
utilized with high confidence.

The red dominant region of the averaged posterior GP model
in Fig. 10(a) indicates the stiffness and C/D ratio parameters for
which the perceived similarity of the rendering compared to the
reference is evaluated to be high. The average posterior model
shows that the parameter sets close to the counter-diagonal
(from the bottom left corner to the top right corner) defining the
visual stiffness Kv have the highest perceived similarity scores,
compared to the other parameter sets.

Overall, the results provide strong evidence that proportion-
ally increasing (decreasing) the C/D ratio can cause a haptic
interface to feel more compliant (stiffer). Accordingly, the re-
sults support the first hypothesis H1.

B. Hypothesis 2

While the averaged posterior GP model in Fig. 10(a) provides
evidence of the feasibility of perceived stiffness modulation via
visual scaling, further insights may be gained about the quality
of such renderings by inspecting the perceived similarity scores
compared to the reference model.

The averaged posterior model in Fig. 10(a) captures a sig-
nificant decrease in the perceived similarity scores as the C/D
ratio deviates further from the unity. For instance, the cross-
comparison results of the multi-modal, high-stiffness, and low-
stiffness optimization indicate that on average these parameter
sets were declared to be similar to the reference model for
68.1%, 48.6% and 43.1% of the trials, respectively. Note that
these results should be compared with the odds of the intercept,
indicating that the reference parameters were declared to be
similar to the reference for 79% of the trials.

Fig. 10(c) presents the JND threshold estimated for the
perceived stiffness according to Section V-E. The area inside
the JND threshold ellipsoid captures the parameter sets that
are indistinguishable from the reference rendering, while the
parameter sets outside this closed curve have detectable differ-
ences. Please note that since users were not asked to simply
compare stiffness but to rate the overall perceived similarity of
the rendering, the existence of a detectable difference does not
necessarily imply that the perceived stiffness of the rendered set
is evaluated to be different; it only implies that users can detect
some difference between the renderings, for instance, possibly
due to the detection of manipulated visual cues.

The JND threshold for the perceived stiffness depicted in
Fig. 10(c) provides an explanation for the cross-comparison
results. According to Fig. 10(c), the average of the multi-modal
optimal parameter sets falls well inside the JND region, while the
average of the high-stiffness optimization results resides on the
JND boundary, and the average of the low-stiffness optimization
results falls outside of the JND boundary. Hence, on average,
the multi-modal optimization parameter sets are not expected to
be distinguishable from the reference model, the high-stiffness
optimization parameter sets are expected to be distinguishable
from the reference model at about the chance level, while the
low-stiffness optimization parameter sets are expected to be
easily distinguishable.

Fig. 11. Probability of parameters to be preferred over the reference, computed
by considering slices of Fig. 10(c) along the straight lines depicted in that figure.
The horizontal grey line depicts the JND threshold.

In line with these observations, the cross-comparison results
indicate that the multi-modal optimal parameter sets are not
statistically significant, supporting the high perceived similarity
with respect to the reference. Furthermore, the statistical tests for
high-stiffness and low-stiffness optimal parameter sets indicate
statistically significant differences with respect to the reference,
at 1% and 5% confidence levels, respectively. Given that the
high-stiffness optimal parameter sets lie on the JND threshold
while low-stiffness optimal parameter sets are outside the JND
threshold, both the detection of the significant differences for
both parameter sets and an increase in the statistical confidence
levels from high- to low-stiffness optimal parameter sets are
consistent with our model.

We further study the effect of visual-haptic incongruency on
the JND thresholds by considering slices of Fig. 10(c) along
the straight lines depicted in the figure. The solid red line
in Fig. 10(c) captures the case when the C/D ratio is set to
unity, while the dashed blue line considers the case when the
stiffness and C/D ratio parameters are increased proportionally
such that the visual stiffness is kept constant at Kv=Kref .
Fig. 11 presents the cross-sections of these slices characterizing
the effect of visual cue modulation on stiffness perception. The
horizontal gray line in Fig. 11 depicts the JND threshold.

The virtual stiffness JND level in Fig. 11 for the unity C/D
ratio, corresponding to changing stiffness without any visual
manipulation, is consistent with the virtual stiffness perception
thresholds reported in the literature [54], [55]. The blue dashed
curve in Fig. 11 represents a proportional relationship between
stiffness and C/D ratio parameters and provides supporting
evidence that the perception of stiffness can be enhanced through
visual scaling with high perceived realism. The blue dashed
curve indicates that as the C/D ratio further deviates from unity,
visual incongruency increases and finally interferes with the
perceived realism of rendering. In particular, while increasing
the perceived compliance, a proportional increase of the C/D
ratio can extend the JND range from 20% to 35% of the reference
stiffness in comparison to the case when the C/D ratio is set to
unity. Hence, the JND threshold can be significantly increased
through visual-haptic incongruency. Accordingly, by increasing
the C/D ratio, one can cause a stiff haptic interface to feel
more compliant in a manner that is indistinguishable from the
reference model.

However, the range of stiffness modulation with high per-
ceived realism is not symmetrical; a similar effect through visual
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Fig. 12. (a) The yellow area indicates the region of sensory integration for
constant C/D ratios with variable stiffness. Blue points have the highest perceived
similarity score along the horizontal axes, with the blue-shaded region around
these points denoting one standard deviation confidence interval. (b) The red area
indicates the region where sensory integration for constant stiffness with variable
C/D ratios. Green points have the highest perceived similarity score along the
vertical axes, with the green-shaded region around these points denoting one
standard deviation confidence interval.

cue manipulation (decreasing the C/D ratio) is not observed
(with a meaningful effect size) when aiming to achieve stiffer
perceived renderings that are indistinguishable from the refer-
ence stiffness. In particular, under visual attenuation, while the
users perceive the stiffness to be higher than the haptic stiffness,
they also indicate that they can detect a difference compared
to the reference model. This detectable difference is possibly
due to the experimental setup necessitating excitations from the
forearm rotations. A low C/D ratio requires a larger range of
motion to achieve a similar visual excitation and this causes
the forearm to approach its joint limits. Furthermore, such a
scaling requires humans to perform more work for the same
visual input. Overall, these effects may result in a detectable
difference compared to the reference rendering when a C/D ratio
is set lower than unity.

In summary, our results suggest that while high C/D ratios
can increase perceived compliance in a manner that is indistin-
guishable from the reference model, low C/D ratios can increase
the perceived stiffness, but users evaluate the overall perceived
realism to be distinguishable from the reference model. Hence,
the perceived realism due to visual-haptic incongruency is not
symmetrical and favors increasing the perceived compliance.

Overall, the cross-comparison results and the JND threshold
in Figs. 10(c) and 11 demonstrate that the perceived realism
under visual-haptic incongruency can be kept high for a limited
range of visual scaling. Accordingly, the results support the
second hypothesis H2.

C. Hypothesis 3

In Fig. 12, to study sensory integration using the averaged
posterior model, we consider vertical slices along Fig. 10(a)
to determine the best C/D ratio for a given fixed stiffness and
horizontal slices along Fig. 10(a) to determine the best stiffness
for a given C/D ratio, respectively.

Along the horizontal lines, as depicted in Fig. 12(a), where a
constant C/D ratio is considered, users determine the best stiff-
ness that reduces the perceived difference between the rendered
parameters and the reference rendering. If the users neglect the

Fig. 13. Estimation of the weight wv of visual cues utilized during sensory
integration with respect to C/D ratio.

scaled visuals and only rely on the movement-related cues from
the haptic modality, then the perceived stiffness will be the haptic
stiffness Kh. If the users utilize only the visual movement cues
presented on the screen and neglect the movement-related cues
from the haptic modality, then the perceived stiffness will be
the visual stiffness Kv and lie along the counter-diagonal in
Fig. 12(a). If users utilize movement-related cues from both hap-
tic and visual modalities and if sensory integration is employed,
then the perceived stiffness will lie in the yellow triangular areas
covering the range between the haptic stiffnessKh and the visual
stiffness Kv .

Similarly, along the vertical lines, as depicted in Fig. 12(b)
where a constant stiffness is considered, users determine the
best C/D ratio that reduces the perceived difference between
the rendered parameters and the reference rendering. If users
select a C/D ratio only to reduce the difference between haptic
and visual movement, then the ideal C/D ratios will lie along
the horizontal line. If users are not affected by the movement
difference between haptic and visual modalities and select C/D
ratios to match the visual stiffness to the reference, then the ideal
C/D ratios will lie along the counter-diagonal in Fig. 12(b). If
sensory integration is employed, then the C/D ratio will lie in the
red triangular areas covering the range between the horizontal
and the counter-diagonal.

The points marked in Fig. 12(a) and (b) depict the points
with the highest probability of similarity to the reference along
their respective (horizontal and vertical) search directions, while
the shaded regions around these points denote one standard
deviation confidence intervals. Since these points captured by
our probability map reside inside the colored triangular areas,
there exists strong evidence for sensory integration between
visual and haptic cues during stiffness perception.

Furthermore, the points in Fig. 12 can also be used to estimate
the relative contributions of haptic and visual cues utilized
by stiffness perception under visual-haptic incongruency, if a
weighted linear combination of the cues is assumed for (possibly
partial) integration. For instance, Fig. 12(a) captures the case of
sensory integration between the haptic stiffness Kh=K and
the visual stiffness Kv=

K
C/D ratio . Given the points in Fig. 12(a)

satisfy the subjective equality, called PSE [5], the visual
weights can be estimated according to the linear interpolation
wv=(PSE−Kh)/(Kv−Kh), while the haptic weights can be
computed as wh=1−wv .

Fig. 13 presents the estimates of the contribution (or weight)
wv of visual cues utilized during sensory integration with respect
to the C/D ratio, computed according to Fig. 12(a). Only the
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parameters corresponding to the adequately explored regions
of the parameter space are included in Fig. 13 to preserve the
reliability of the estimates.2

The results indicate that as the C/D ratio deviates further from
unity, increasing the level of incongruency, the contribution wv

of visual cues in sensory integration decreases. The crossing of
the 50% threshold in Fig. 13 further indicates that the dominant
sensory modality for the movement-related cues switches from
vision to haptics as the C/D ratio deviates from the unity.
Moreover, the visual contributions are relatively higher for the
range of C/D ratios aimed to increase perceived compliance,
when compared to the range of C/D ratios aimed to increase
perceived stiffness.

These weights explain the non-symmetrical nature of the
perceived realism presented in Fig. 11, indicating that high
C/D ratios result in a more rapid decrease in the contribution
of the visual cue. Finally, an extrapolation of the decreasing
contribution trend in Fig. 13 suggests that vetoing of visual
modality is likely to occur for large incongruency levels. These
results strongly support the last hypothesis H3.

D. Comparisons With the Related Work

Our results are in good agreement with [1], [5], [15], [16], in-
dicating that the sensory integration process during multi-modal
visual-haptic compliance estimation under visual scaling can be
modeled through a weighted linear combination of redundant
sensory signals and manipulated visual cues can expand the
perceived stiffness range of haptic rendering.

While our study is similar to [15], [16], we explore a contin-
uous range of visual scaling levels from a perceived similarity
perspective and our results are in more line with those of [1],
[5]. Our findings extend [16] and support [1], [5], indicating
a decreased contribution of the manipulated visual cue in the
multi-modal percept as its congruency is reduced, and suggests
possible vetoing of this unreliable cue when strong conflicts
arise between the haptic modality and the manipulated visual
feedback.

Our study supports the conclusions of [13], [16], [19], indi-
cating that pseudo-haptics can enhance haptic feedback during
stiffness rendering. Our approach differs as we rely on qualitative
feedback-based HiL optimization to maximize the perceived
similarity with respect to the reference and determine the optimal
levels of the visual scaling.

Our results support the observations in [20], [22] stating
visual-haptic incongruency significantly influences stiffness dis-
crimination performance when the discrepancy between the vi-
sual feedback and the hand movements is large. We extend these
results by explicitly characterizing the relationship between the
incongruency levels and the perceived realism.

2C/D ratios near the boundaries of our search space are omitted from the
estimates as these parts of the probability map are under-explored. Similarly,
the C/D ratio near unity is not included as the estimation becomes very sensitive
to experimental noise around this value.

Our JND estimations are consistent with the results of earlier
psychophysical experiments, which reported the JND threshold
as 23% [55] or in the 8%− 22% range [54].

For the comparison of our results with the discrimination
threshold models in [56], Fig. 10(c) can be mapped to a visual
stiffness versus haptic stiffness increment (ΔKh–ΔKv) plot,
where both stiffness increments are defined with respect to
Kref . After this transformation, the JND ellipsoid along the
counter-diagonal of Fig. 10(c) maps to another ellipsoid along
the main diagonal (from the top right corner to the bottom left
corner) of the new plot, since Kv is inversely proportional to the
C/D ratio. The mapped JND ellipsoid in the ΔKh–ΔKv plot
is consistent with the discrimination threshold model proposed
in [56] when participants have access to both the single-cue and
combined estimates.

Furthermore, given the parameters with the highest per-
ceived realism scores inside the JND threshold (residing pre-
dominantly along the counter-diagonal) in Fig. 10(c) are in-
distinguishable from the reference, they can be classified
as metamers—physically distinct, but perceptually indiscrim-
inable, stimuli [56], [57].

While our study determines the relative contributions of visual
and haptic modalities with respect to the visual scaling under the
assumption of a weighted linear combination of these cues, it
makes no attempt to determine the underlying model of (possibly
partial) sensory integration.

One interpretation of the results in Fig. 13 is possible by
utilizing the causal inference model [12], which generalizes
the MLE model of multisensory cue integration by considering
the causes of the underlying sensory events. In particular, the
causal inference model infers the probability of a common cause
versus two independent causes to derive optimal predictions.
Accordingly, this model involves two parameters, capturing the
probability of a common cause and the relative weight of each
cue for the sensory integration case.

On the one hand, the causal inference model reduces to maxi-
mum likelihood estimation when there is a high probability of a
common cause. In our experiments, participants were provided
explicit instructions emphasizing the common cause between
the visual and haptic modalities. Furthermore, while the visual
feedback was scaled, the synchronization between the haptic in-
put and visual output was preserved throughout the experiments,
resulting in a convincing causal reason for a common cause.
Accordingly, if one considers that the probability of independent
cause was low and the discrepancies were sufficiently small and
hard to detect, then the weights in Fig. 13 may be attributed to
the weights of an MLE-type sensory integration.

On the other hand, due to the experiment design, our results
do not allow for the extraction of the two parameters of the
causal inference model from the data; hence, the common cause
assumption cannot be verified. Furthermore, discrepancies may
become large as the C/D ratio further deviates from unity. As
an alternative interpretation, if one assumes that the visual feed-
back completely dominates the movement-related cues, then the
weights in Fig. 13 can be interpreted as the probability of a
common cause.
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Overall, it is likely that the underlying model of sensory
integration lies somewhere between these two interpretations,
performing partial sensory integration under conflicting cues.

VII. CONCLUSION AND FUTURE WORK

We provide evidence that the perception of users can be
successfully manipulated by changing the visual modality with-
out altering the rendered stiffness parameter, to make virtual
environments feel stiffer or more compliant. We show that HiL
optimization based on qualitative feedback is an effective means
of customizing the rendering parameters under visual-haptic
incongruency to achieve consistently high perceived realism
scores for a given haptic interface and a user.

We demonstrate that the level of visual-haptic incongruency
introduces limitations to the range of visual scaling for which
the perceived realism can be kept high. We provide evidence
that while increasing compliance via amplification of the visual
feedback has high perceived realism, increasing stiffness via
attenuation of the visual feedback provides lower perceived re-
alism, as effects such as the joint limits of the user and extra work
that needs to be performed to achieve a similar visual excitation
may result in detectable differences. To determine these limits of
performance, we provide a novel means of estimating the JND
thresholds through the HiL optimization.

Finally, we provide strong evidence that movement-related
cues from the haptic and visual modalities are integrated by a
weighted linear combination to form a stiffness percept from the
redundant sensory modalities. Accordingly, the perceived stiff-
ness is formed as a linear combination of ideal visual stiffness
and haptic stiffness values. We provide a novel means of estimat-
ing these weights in visual-haptic sensory integration and show
that as the incongruency level of the visual feedback increases,
the contribution of visual cues (their respective weights in the
stiffness perception) decreases.

Overall, we advocate for the utilization of HiL optimization
during multi-modal haptic rendering, since it not only allows
for the determination of appropriate haptic-visual parameters
to ensure a consistently high rating of perceived realism but
also provides an efficient means to study multi-modal sensory
integration under conflicting cues.

A. Study Limitations and Future Work

While the proposed non-parametric Bayesian optimization
framework provides insight into the sensory integration process
under conflicting cues and the results that are in good agreement
with the related works, there are many interesting research
directions along which the proposed method can be further
improved.

The main goal of this study was determined as HiL optimiza-
tion of the scaling ratio to maximize the perceived realism of
stiffness rendering under visual-haptic incongruency. Accord-
ingly, the acquisition function has been selected in such a way
that it prioritizes the sample efficiency, favoring exploitation
over exploration. Hence, while the HiL optimization adequately
samples the regions near the maxima, non-promising regions

may be under-sampled. This choice results in fast convergence
of the approach to the optimal parameters.

As a trade-off of this choice, the probability estimates in the
less explored region of the parameter may become less reliable.
To extend the range of adequately explored parameter space, one
can utilize the HiL optimization approach with an alternative
acquisition function that provides better exploration properties
or include uniform random sampling for the unexplored regions
of the parameter space, at the cost of a longer experiment
duration.

Similarly, the ordinal and pairwise feedback collected from
the user in our study were designed to maximize the perceived
similarity of stiffness rendering with respect to the reference
model. Accordingly, while our JND estimations are consistent
with the results of psychophysical experiments reported in the
literature [54], [55], [56], these questions do not necessarily
constitute the most direct queries for determining JND thresh-
olds. Queries may be updated if the determination of the JND
thresholds is the main goal.

During the non-parametric modeling with GPs, the selection
of the underlying kernel and its hyperparameters, as well as
the enforcement of certain constraints over the latent function,
such as monotonicity, may improve the optimization process.
For simplicity and flexibility in analysis, we utilized a GP with
a radial basis kernel with no constraints, and the resulting latent
function was captured as monotonic. Future studies may impose
monotonicity, possibly along a single stimulus dimension, to
further improve the sample efficiency.

Furthermore, in this study, while the kernel parameter was
optimized to achieve the maximum likelihood of observations,
the rest of the hyperparameters of the GP model were selected
based on insights gained from preliminary experiments. The
utilization of more advanced hyperparameter tuning methods is
a part of our future work.

The anonymized data collected during our study, the HiL
optimization algorithm, and the values of empirically deter-
mined hyperparameters are available at GitHub3 to enable other
researchers to build upon our study.

APPENDIX A
ACTIVE LEARNING MODEL AND BAYESIAN OPTIMIZATION

1) Latent Function Modeling: Let X ⊂ Rd×d be the finite
set of parameters used in visual-haptic rendering. Let x =
{xi : i = 1, . . ., 2n} and x ⊂ X be the rendered parameter sets
observed by the subject in the HiL trials until the nth iteration.
Let f(x) be the latent function that reflects the human perception
for the rendered parameters x. Since GP regression can closely
approximate black-box functions, such as psychometric field
f(x), a normalized GP is modeled as

f(x) ∼ GP (f(x); 0,Σ(x)) (5)

P (f(x)) =
1

(2π)n|Σ(x))| 12 e
− 1

2 (f(x)Σ(x)−1f(x)) (6)

3https://github.com/HarunTolasa/Gaussian-Process-Library
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where Σ(x) represents the covariance matrix

Σ(x) =

⎡
⎢⎢⎣
k(x1, x1) · · · k(x1, xn)

...
. . .

...

k(xn, x1) · · · k(xn, xn)

⎤
⎥⎥⎦ (7)

and the covariance between each parameter set is defined by a
radial basis kernel defined as

k(xi, xj) = e−γ‖xi−xj‖2 . (8)

During a trial, subjects provide two separate ordinal classi-
fications for two rendering parameter sets and one pairwise
preference between them. Let qi be a subject’s feedback for
ith iteration; qi ⊂ {qoi1 , qoi2 , qpi

}. Let D ⊂ {qi : i = 1, . . ., n}
be the total set of qualitative feedback data.

If the latent function is known, then the probabilities of
subjects providing ordinal classification and pairwise preference
correctly are P (qo|f(x)) and P (qp|f(x)), respectively. There-
fore, for a known latent function, their ability to provide the
correct answer for the ith iteration has the probability

P (qi|f(x)) = P (qoi1 |f(x))P (qoi2 |f(x))P (qpi|f(x)). (9)

Assuming that all of the qualitative feedback is independent of
each other, then the probability of the collected qualitative feed-
back data up to nth iteration being correct in HiL optimization
is given by

P (D|f(x)) =
n∏

i=1

P (qi|f(x)) (10)

Let εp in Fig. 2 be a Gaussian white noise with variance c2p.
Then, the probability of participants providing correct pairwise
comparison is defined as

P (qpi = (xi1) � (xi2)|f(x)) = Φ

(
f(xi1)− f(xi2)

cp

)
(11)

where Φ represents the cumulative distribution function of the
Gaussian distribution.

Let O = {o1, o2. . ., or} be the finite set of r ordinal classi-
fications and toj be the threshold of each ordinal classification
−∞ = to0 < to1 < to2 < . . . < tor = ∞. Let εo in Fig. 2 be a
Gaussian white noise with variance c2o. Then, the probability for
parameter xi belonging to the othj ordinal class is defined as

P (qoi=oj |f(xi))=Φ

(
toj−f(xi))

co

)
− Φ

(
toj−1−f(xi)

co

)

(12)
where co is the noise level constant.

2) Posterior Latent Function and Bayesian Inference: The
posterior probability distribution function of f(x) for the col-
lected qualitative feedback data D be modeled as

P (f(x)|D) ∝ P (D|f(x))P (f(x)). (13)

The Laplace method is used to approximate the posterior distri-
bution of P (f(x)|D) as a multi-variate Gaussian distribution.
The Laplace approximation uses a second-order Taylor expan-
sion of posterior distribution around its mode [44]

f(x)|D ∼ GP (f(x); f̂ , (W +Σ(x)−1)−1) (14)

ˆf(x) = argmaxf(x) (log(P (D|f(x))P (f(x)))) (15)

where W is the negative Hessian of log(P (q|f(x))) defined as

Wij = −∂2 log(P (D|f(x))
∂f(xi) ∂f(xj)

.

From the posterior distribution of f(x)|q = f|D, the output of
the latent function f(x∗) = f∗ for any arbitrary parameter set
x∗ ⊂ X can be estimated. Let f∗|D be the estimated output of
the latent function for an arbitrary parameter set x∗ based on the
information q. Then, f∗|D is another Gaussian distribution that
can be computed by marginalization.

P (f(x∗)|D) =

∫ ∞

−∞
(P (f(x∗)|f(x), q)P (f(x)|D)) df(x)

(16)
The result of the integral in (16) is given as

f∗|D ∼ GP (f ;E(f∗|D), V ar(f∗|D)) (17)

with

E(f∗|D) = k∗ Σ−1f̂

V ar(f∗|D) = k∗∗ − k∗ (Σ +W−1)−1kT∗ .

where k∗ = k(x∗, x1:n) and k∗∗ = k(x∗, x∗). The estimated
mean and variance of f∗|D in (17) are utilized by the acqui-
sition function to predict the most promising points for the next
iteration, as well as to form an understanding of the perceived
similarity of the participants.

3) Predicting Subject Preferences:: Marginalization also al-
lows for the prediction of posterior probabilities of qualitative
feedback. We used it to find the posterior probability of prefer-
ring an arbitrary parameter x∗ over the reference xref , denoted
with probability P (x∗ � xref |D). Let Δf be the difference
between latent scores f∗ − fref . For known a known difference
Δf , the preference probability of the user is modeled as

p(x∗ � xref |Δf) = Φ(Δf/cp) (18)

The posterior distribution of latent score difference Δf has a
Gaussian distribution with the mean E(Δf|D) and the variance
V ar(Δf|D).

E(Δf|D) = E(f∗|D)− E(fref |D) (19)

V ar(Δf|D) =V ar(f∗|D)+V ar(fref |D)−2Cov(f∗|D, fref |D)
(20)

The mean and variance of Δf|D is found using (17). Then,
P (x∗ � xref |D) is estimated as

P (x∗ � xref |D) =

∫ ∞

−∞
Φ

(
(Δf)

cp

)
P (Δf |D)dΔf (21)

and the result of this integration is denoted as

P (x∗ � xref |D) = Φ

⎛
⎝ E(Δf|D)√

V ar(Δf|D) + c2p

⎞
⎠. (22)
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