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Integrating Point Spread Function Into Taxel-Based
Tactile Pattern Super Resolution

Bing Wu and Qian Liu

Abstract—The past decade has witnessed the development of tac-
tile sensors, which have been increasingly considered as an essential
equipment in robotics, especially the dexterous manipulation and
collaborative human-robot interactions. There are two major types
of tactile sensors, i.e., the vision-based and taxel-based sensors.
The latter is capable of achieving lower integration complexity
with existing robotic systems, but unable to provide high-resolution
(HR) tactile information as that of the vision-based counterpart due
to the manufacturing limitations. Therefore, we propose a novel
tactile pattern super-resolution (SR) scheme for taxel-based sen-
sors, which is a data-driven scheme enabling customized selection
on the number of applied “tapping” actions to achieve improvable
performance from single tapping SR (STSR) to the multi-tapping
SR (MTSR). In addition, we develop a new dataset for the pro-
posed tactile SR scheme. In order to obtain scalable resolutions
(e.g. ×4, ×10, ×20, etc.) of ground-truth HR tactile patterns,
we propose a novel tactile point spread function (PSF) scheme to
generate HR tactile patterns by leveraging the low-resolution (LR)
data gathered directly from the taxel-based sensor and the depth
information of contact surfaces. This is in strong contrast to the
conventional ground-truth generation approach with overlapped
multi-sampling and registration strategy, which can only provide a
fixed resolution. Experimental results confirm the efficiency of the
proposed scheme.

Index Terms—Tactile super resolution, tactile perception, tactile
PSF.

I. INTRODUCTION

THE tactile sensing plays an important role in human per-
ceptions, which allows us to engage with the surrounding

environments and obtain valuable touch feedback on the prop-
erties of objects and surfaces. With the continuous advancement
of robotics and augmented/virtual reality technologies, there is
an increasing demand for tactile sensors that can replicate the
rich and delicate perception of human touch. High-resolution
(HR) tactile data can enhance the ability of robots to execute
intricate manipulation tasks [1], as well as improving the user’s
experience during human-robot interactions [2].
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Tactile signals are typically described in three categories: the
force signal, the vibration signal, and the tactile pattern. The
tactile pattern can capture sophisticated tactile details such as
the surface texture and the contact object shape via distributed
tactile sensing arrays. In this paper, the tactile pattern can
be considered of as an array of data collected by the sensor,
representing the deformation distribution on the sensor surface.
Because of the similarity between the tactile pattern and the
image, some researchers have treated it directly as an image [3],
[4]. However, it is still a challenging task to obtain HR tactile
pattern due to the physically low resolution (LR) of the tactile
sensing hardware [5].

Over the past decade, numerous sensors have been developed
to obtain HR tactile data. The highest resolution is achieved
by vision-based tactile sensors [6], [7], [8], some of which can
provide resolutions as fine as 1 micrometer and detect the tactile
texture information at the fingerprint level. These sensors rely
on a camera mounted behind a gel to capture its deformation
upon contact. The captured signal is then used as the tactile
pattern. Nonetheless, a tight integration of vision-based sensors
to the existing systems still needs further investigation due to
the critical space required by the imaging equipment. Therefore
recent researches on vision-based sensors start to figure out how
to reduce the size of the entire sensor (including the filming
equipment) [9], [10] while increasing the sensing scale [11].

The taxel-based tactile sensor is another type of tactile sensors
that operates on various physical principles such as capacitive,
piezoresistive, and magnetic [12]. These sensors comprise an
array of small sensing elements, called taxels. Each taxel can
collect the one- or three-axis force or deformation information in
a specific contact area. This type of sensor is available in various
sizes and of ease to integrate into existing systems.However,
most taxel-based sensors can only collect LR tactile data. Due
to the current limitations in manufacturing and other factors, the
resolution of advanced taxel-based sensors is ∼1 mm [13], [14],
which is significantly lower than that of vision-based sensor.
In order to improve the resolution of the tactile sensor, [13],
[15], [16] have attempted to increase the sensor density. The
Silicon micro-electro-mechanical system technology is used to
enhance the spatial resolution [17], [18]. However, various issues
emerge with the increase of the taxel density such as more wire
connections, longer data acquisition time, and amplified cross-
talk between taxels [19].

Therefore, tactile SR algorithms were developed aiming at
predicting the HR tactile signals from physically LR taxel-based
sensor array. Unlike existing algorithms, which typically focus
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on improving the localization accuracy of a single contact point
in the taxel-based sensor, our previous work [20] is to investigate
the applicability of SR methods from computer vision to the tac-
tile field, and propose two deep learning based tactile pattern SR
algorithms by adapting image SR algorithms (e.g. SRCNN [21]
and SRGAN [22]). The developed schemes can achieve ×10
(from 4× 4 to 40× 40) resolution enhancement with a single
tapping of a LR taxel-based sensor. However, we further discover
that the performance of these models is restricted by the resolu-
tion of ground-truth tactile patterns. In [20], LR tactile patterns
cannot be predicted accurately via the down-sampling strategy,
since two visually alike tactile patterns may significantly drift
apart from each other with respect to the actual contact force.
This leads to the method of generating HR data in [20] cannot
obtain flexible scales in-between 4×4 and 40×40. Moreover, the
generated HR data depends on the positioning accuracy of the
robot arm, which presents challenges in obtaining HR data as
ground truth at higher scaling factor. Notably, at a scaling factor
of ×10, the movement stepsize of the robot arm was 0.047 mm,
approximating the limits of the arm’s positioning accuracy. In
order to overcome these problems, we propose in this paper a
tactile novel point spread function (PSF) based model which
helps to quickly generate high-quality HR tactile patterns with
different scaling factors (e.g. ×4, ×6, ×8, ×10, and ×20). The
PSF can model the response of a system to a single stimulus. In
the field of tactile sensing, the PSF can be used to approximate
the deformation experienced during the contact process. This
way, the contact pattern can be considered as the superposition
of multiple point stimuli. This method offers greater efficiency
compared to the multi-sampling and registration strategy [20].
This way, we build up a new dataset for the tactile SR with pairs
of LR sensor data and scalable HR tactile patterns. We believe
that the new dataset can be considered as a valuable reference
to the future research of tactile SR.

In this paper, we tackle the challenge of SR for tactile patterns
with regional or multiple contacts, and propose a data-driven
tactile pattern SR scheme specifically tailored for 3-axis taxel-
based sensors, which allows a customized selection of single
or multiple LR inputs. All experiments are conducted with
a commercial Xela tactile sensor [23], which comprises 4×4
sensing units with an 4.7 mm inter-unit spacing. The overall
effective sensing area is ∼ 20×20 mm2. To facilitate interaction
between the tactile sensor and the contact surface, we mount
the Xela tactile sensor at the end-effector of a robot arm. We
only use the 3D deformation distribution information measured
by the sensor, which means that the proposed scheme does
not rely on any specific characteristics of sensors. Therefore,
the proposed SR scheme can be directly applied to obtain HR
tactile patterns with similar 3-axis taxel-based sensors without
complicated adjustments. The description of abbreviation in this
paper as shown in Table I.

The rest of this paper is organized as follows. Section II
provides a brief literature review on the image SR, the tactile
SR and the tactile sensor simulation algorithms. Section III
presents the mathematical model of tactile pattern SR. Before
demonstrating the proposed tactile SR scheme in Section V,
we first present how to build a new dataset for the proposed
research, as well as a novel tactile PSF model which is utilized to

TABLE I
DESCRIPTION OF ABBREVIATIONS

generate flexible scales of ground-truth tactile patterns in the new
dataset. In Section V, we illustrate a data-driven tactile pattern
SR scheme that allows a customized selection of the number of
“tapping” actions. A satisfactory performance can be achieved
by single tapping, which is further enhanced once adopting
multi-tapping inputs collected from the LR tactile sensor array.
Section VI reports the experimental results dataset related cases,
as well as real-world cases. Finally, Section VII concludes the
paper with a summary.

II. RELATED WORK

A. Image SR

Image SR algorithms have been extensively studied in the
field of computer vision [24]. In the case of single image super-
resolution, an HR image is generated from a single LR image
via an SR model, which generally employs the prior knowledge
of the LR image or the dataset for predication. The famous
SRCNN [21] and SRGAN [22] models belong to the category
of Single Image Super-Resolution. On the other hand, the multi-
image or video super-resolution approaches reconstruct an HR
image from multiple LR frames, incorporating not only the prior
knowledge of the current frame but also that of adjacent frames.
A notable example of the video super-resolution algorithm is the
VSRnet [25].

B. Tactile SR

Existing researches on the tactile SR basically focus on lo-
cating an HR contact point when a single stimulus is applied to
the LR tactile sensor, which can be referred as the localization
SR [26]. Bayesian active perception algorithms were proposed
in [26], [27] to classify contact surfaces on taxel-based and
vision-based sensors, respectively, which achieved 35-fold and
40-fold improvements in the localization accuracy. A data-
driven approach was presented in [28] using multiple Takktile
pressure sensors in the shape of a dome, which obtained a nearly
15-fold improvement in the localization accuracy. The Taxel
Value Isolines model was proposed in [29] to describe the tactile
localization SR process and achieved a 109-fold improvement
in the 1-D scenario and a 1254-fold in the 2-D case. The Local
Message Passing Network in [30], calibrated sensor arrays using
single-touch data for multi-touch scenarios. However, sensors
used in the above studies only measured the Z-axis deformation
or force signal during the contact process, neglecting the shear
signal. In contrast, [31] presented a 3-axis magnetic tactile skin
capable of detecting and interpreting force and location data in
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real-time. [32] used a 3-axis tactile sensor to achieve a 60-fold
improvement in the localization accuracy and quantitatively
described the role of the shear force in the SR process. [33]
utilized the sensor-specific properties to obtain the single-point
and multi-point tactile localization SR for a single taxel. All
of these approaches were proposed to improve the localization
resolution, and most of them are only developed for single-point
contact scenarios, not applicable to the tactile pattern SR.

For Electrical-Impedance-Tomography based sensors, the
contact pattern was determined by measuring the changes in
current flow and the associated voltage of a ring of electrodes
placed around a pressure-sensitive conductive fabric. Its spatial
resolution can be improved by using a grid of internal array
electrodes [34]. Deep neural networks were adopted to improve
the quality of reconstructed tactile pattern [35], [36], [37].

C. Tactile Sensor Simulation

In this research, we employ the tactile sensor simulation
method to generate the ground truth of different scales of HR
tactile patterns in the dataset, which is achieved by simulating the
deformation of the tactile sensor surface when having contacts
with an object. Since most tactile sensors utilize soft materials as
the sensor surface, the tactile information can be simulated as the
deformation or force of an elastomer. In this context, physical
simulation algorithms, such as the mass-spring model [38], [39],
the finite element method [40], [41], [42], and the material point
method [43], [44], can achieve this goal but with considerably
high computational complexity.

Recently, data-driven methods have been introduced to the
field of tactile simulation. For example, [45] used the finite ele-
ment method to simulate the deformation of the BioTac sensor,
then translated it into an electronic signal through a generative
learning framework. Other studies (such as [46], [47]) utilized
computer graphic techniques, such as ray-tracing models and
example-based methods, to simulate the vision-based tactile
sensors. A direct use of the PSF in the tactile simulation was
proposed in [48], [49], which obtained a satisfactory match to
the real data collected by the sensor with a fine calibration setup.
However, as the resolution increases, the deviation between the
simulated and real data enlarges. This is caused by the PSF
blurring effect which will be discussed in detail in Section IV.
This motivates the study on the proposed tactile PSF in this
research.

III. PROBLEM STATEMENT

In this section, we present the mathematical model of the
tactile pattern SR. Let [T0,T1, . . . ,Tk] ∈ Rk×3×M×N be a
sequence of tactile data sampled during a single contact process,
where the tactile data at any time k can be decomposed into three
components, i.e. Tk = [Tx,k, Ty,k, Tz,k], where

Tx,k =

⎡
⎢⎣

t0,0x,k · · · t0,N−1
x,k

...
. . .

...
tM−1,0
x,k · · · tM−1,N−1

x,k

⎤
⎥⎦
M×N

,

and tM−1,N−1
x,k denotes the x-axis data of the [M,N ]-th taxel cell

at time k. We set M = N = 4 in this paper, which indicates that
the sensor is composed of 4× 4 taxels as that of the Xela tactile
sensor used in this research. Ty,k and Tz,k can be obtained
similarly.

The key task of tactile SR is to recover a HR tactile pattern
from a LR counterpart. Similar to the image SR, we assume
that the LR pattern can be considered as a degradation of the
HR pattern. We define the z-axis degradation mapping function
Dz as

TLR
z,k = Dz(T

HR
z,k, γz), (1)

where γz presents the set of parameters of the degradation
process (e.g., the scaling factor and the noise). The above
degradation function is generally unknown. Hence, the task of
SR is to find a T̂HR

k as similar as the real HR pattern THR
k . When

giving the LR data at the current moment, the HR data can be
obtained by the prediction model shown below.

T̂HR
z,k = Fz

(
TLR

x,y,z,k, θ
)
, (2)

where Fz denotes the SR model and θ denotes the set of
parameters corresponding to the model. Since the raw LR tactile
data in each axis contain limited amount of information, it is
difficult to recover a HR pattern from them. Therefore, in this
paper, we attempt to recover HR data of the z-axis using the LR
x-, y-, and z-axis data. Finally, the task of tactile pattern SR can
be described as

θ̂ = argmin
θ

L(T̂HR
z,k,T

HR
z,k) + λΦ(θ), (3)

where L(T̂HR
z,k,T

HR
z,k) denotes the loss function, which measures

the gap between the ground truth and the predicted HR tactile
pattern. Φ(θ) is the regularization term, and λ is the trade-off
parameter.

IV. A NEW DATASET FOR TACTILE PATTERN SR
1 Before demonstrating the proposed tactile SR model, we first

build a new dataset of LR and HR pairs, which is essential for the
model learning of the proposed scheme. In particular, we present
a new tactile PSF method, which leverages the information of
the LR data and the depth of the contact pattern to create the
HR ground-truth tactile patterns. This approach is a significant
improvement over our previous multi-sample registration based
method in [20] for the ground-truth data generation. The new
approach reduces the time required to obtain the HR data, and
eliminates the artifact block caused by sensor-specific properties
and the motion errors of the robot arm.

A. System Setups

We employ the Xela tactile sensor [23] in this research. It is a
commercially available 3-axis tactile sensor which implements
the Hall effect and consists of 4×4 taxel units. We mount the Xela
tactile sensor on the end effector of the Aubo-i10 robot arm from
AUBO Robotics as shown in Fig. 1, which boasts a precision

1The tactile SR dataset is available at https://github.com/wmtlab/tactileSR.
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Fig. 1. Building a new dataset for the tactile pattern SR. (a) System setup: An Xela tactile sensor is attached to the Aubo-i10 robot arm. LR-HR pairs are collected
by tapping, which can also be described as indenting, the contact surface with the tactile sensor. (b) An example of 3-axis LR tactile pattern: Tactile signals
collected by the Xela tactile sensor have three axes: Z-axis tactile data indicating the positive deformation, and X- and Y-axis data indicating the corresponding
shear deformation. Positive and negative signs are used to distinguish the direction of the deformation. (c) Dataset: The dataset used in this study contains 18
contact surfaces from two contact plates. Each contact surface has 36 different poses, corresponding to 36 different contact patterns, with 9 different positions and
4 different orientations. The depth image in the dataset are used to generate the ground truth deformation distribution. The variable p1 ∼ p9 indicates the sensor’s
center position during the tapping action, and r0 ∼ r90 indicates the sensor’s z-axis orientation.

of ±0.03 millimeters. Each taxel of the sensor is capable of
capturing the 3D deformation information of a specific region
and separating it into x-, y-, and z-axis signals. The z-axis signal
represents the positive pressure applied to the sensor, while the
x- and y-axis signals denote the shear deformation along the
x- and y-axis, respectively. The sensor’s maximum normal and
shear force capabilities are 18 N and 5 N, respectively.

The Xela tactile sensor detects magnetic field changes in its
elastic layer caused by magnetic particles, serving as the tactile
signal. As the sensor’s readings are influenced by surrounding
magnetic field changes, a complex calibration algorithm is es-
sential for its calibration. However, for the scope of our research,
exact force values are not crucial. Therefore, we directly utilize
the sensor’s output values, which reflect relative force magni-
tudes.The sensor data and the applied force correspond to each
other. The mapping between them can be found in Figs. 7 and 8
in [23].

B. LR Tactile Data Collection

We build two 3D-printed contact plates for the LR tactile data
collection, each with 9 distinct contact surfaces, as shown in
Fig. 1(c). The size of each contact surface is 20mm × 20mm,
which is similar in size to the Xela tactile sensor. Contact sur-
faces of the first plate are regular alphabets, while the second one
consists of polygons of different sizes. These contact surfaces
contain tactile features of straight and curved lines, which are
commonly encountered in robotic manipulation tasks.

LR data of the contact pattern are collected for the 9 different
contact surfaces in 36 distinct poses. These poses consist of 9
positions, each with 4 different orientations. The data collection
procedure is as follows. The robot arm is first moved directly to
the given position, with the Z-axis of the tactile sensor perpen-
dicular to the contact surface and the X-axis aligned with the
given orientation. The arm then moves down slowly toward the

object until the contact force reaches a specified threshold. This
LR tactile data acquisition process procedure is then repeated
for all designed poses. The robot arm coordinate system and
the contact surface coordinate system are calibrated, allowing
us to determine the depth of the contact surface by combining
the posture of the end of the robot arm and the 3D model of the
contact plate at the current contact moment. So far, we obtain
the LR tactile data and the corresponding depth information for
the new dataset. In the next section, we will illustrate how to
use the proposed tactile PSF model to generate the HR ground
truth tactile patterns.

It should be noted that, in this paper, we consider the contact
force as the resultant force applied to the sensor along the Z-axis
during the tapping process. Furthermore, the sum of the Z-axis
sensor reading is employed to represent the magnitude of the
contact force.

C. Proposed Tactile PSF Model

Previous work [48] have utilized the PSF to simulate LR
tactile sensors. The PSF is also used to capture the effects
of deformation [49], [50], [51]. In this paper, we develop a
data-driven tactile PSF model to obtain the ground truth of
HR tactile patterns by leveraging the LR tactile data, the corre-
sponding depth information and the classic PSF. The use of PSF
enables a rapid simulation of HR data, avoiding time-consuming
procedures in the finite element method, material point method,
and other physics-based simulators. In this paper, we adopt the
Gaussian PSF

PSF(m,n, Fu,v)=α(Fu,v) · exp
{
−
√

(m− u)2+(n− v)2

β(Fu,v)

}
,

(4)

which denotes the intensity subjected to the point (m,n) when
the point (u, v) is stimulated by the applied force of Fu,v .
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Fig. 2. Illustration of the contact procedure. (a) The tactile sensor is moving
toward the object, with a constant downward force applied, assuming that
the contact object does not undergo deformation. (b) The simulation of the
elastic deformation of the surface with linear elastic FEM. (c) The figure above
illustrates the case of a small contact force, where the tPSF and PSF predictions
are similar to that of FEM with a small value of β. The figure below illustrates
that the increase of the contact force leads to a larger β, and thus a larger PSF
blur effect, as well as a larger difference between the PSF and FEM predictions.

The term α(Fu,v) describes the intensity of the single point
stimulus, while β(Fu,v) indicates the effect of this intensity on
the surrounding taxel. α and β are intrinsic properties of the
tactile sensor, which depend mainly on the properties of the
taxel, the distribution of taxels, and the material of the sensor
surface. When the sensor is given, the relationship betweenα(F )
and β(F ) is determined.

For the multi-point contact or a contact pattern, it can be
regarded as the superposition of a number of point stimuli, i.e.,
the convolution of the depth of the contact pattern and the PSF.
From Fig. 6, we can see that the depth of the contact pattern and
the PSF are convolved to obtain the HR tactile pattern. As the
contact force increases, both α and β values of the PSF increase,
resulting in a corresponding increase in the deformation of the
HR tactile pattern.

Hence, we have

THR
z = kscale{IDepth ∗ PSF(F )}

tm,n
z = kscale

∫∫
{IDepth

u,v PSF(m,n, Fu,v)}dudv, (5)

where THR
z represents the Z-axis HR tactile pattern and tm,n

z is
the tactile signal of a single taxel located at the point (m,n) in
the HR tactile pattern, which is the result of the accumulated
effect of all points with IDepth. F denotes the external forces
acting upon the tactile sensor surface, can be considered as
the aggregation of all such individual force components expe-
rienced across the entire sensor surface.Each element of IDepth,
denoted as IDepth

u,v , represents the depth of the contact pattern at
the point (u, v), which is normalized to the range of [0, 1] in
this study. kscale is a constant factor used to match the contact
deformation between the LR and HR data.

We should point out that the Gaussian PSF has a blur effect,
which becomes more severe as the applied force increases.
Fig. 2(c) illustrates this effect in a one-dimensional scenario.
This effect will lead to a more blurred HR tactile pattern and a
greater deviation from the reality. The blur effect can be reduced
by restricting the range of the Gaussian kernel. Therefore, we

Fig. 3. Illustration of the degradation process for the HR to LR tactile pattern.
The LR sensor model represents a real-world sensor with taxels placed behind
an elastic medium. Upon contact with an object, the elastic medium deforms and
the taxel measures the deformation of the elastomer as the tactile information.
The HR sensor model is an idealized HR sensor model with smaller taxel size
and smaller distances between adjacent taxels. The parameter hi,· in this model
represents the weight of the HR taxel on tLR

i in the LR sensor during the
degradation process.

can define the ground truth of HR tactile pattern as

THR
z =

{
IDepth ∗ PSF(F ), tm,n

z /∈ T
max(IDepth ∗ PSF(F )), tm,n

z ∈ T , (6)

where T denotes the area of an instant contact interaction
between the contact surface and the sensor, corresponding to
the top region of the 3-D printed contact pattern. The operator
of ∗ denotes the convolution operation.

The HR tactile pattern can be considered as the SR of LR
data. Alternatively, the LR tactile pattern can be considered
as a Gaussian degradation process of the HR data, where the
value of each LR taxel is determined by summing up the values
of the surrounding HR taxels with Gaussian weights. For de-
scriptive purposes, we flatten T̂LR

z ∈ RN×N andTHR
z ∈ RM×M

into 1D representations, resulting in T̂LR′
z ∈ RN2×1 and THR′

z ∈
RM2×1, respectively. Hence we have

TLR
z = Dz(T

HR
z )

T̂LR′

z = H ·THR′

z + e, (7)

where H is the degradation matrix, and e is the sensor noise
following the Gaussian distribution with zero mean and variance
of δI, where I is the identity matrix. Expanding the degradation
matrix, we have⎡
⎢⎣

tLR
0
...

tLR
N2−1

⎤
⎥⎦ =

⎡
⎢⎣

h0,0 · · · h0,M2−1

...
. . .

...
hN2−1,0 · · · hN2−1,M2−1

⎤
⎥⎦ ·

⎡
⎢⎣

tHR
0
...

tHR
M2−1

⎤
⎥⎦+e,

where the degradation matrix H has a dimension of N2 ×M2,
and each row hi,· describes the influence of each taxel of THR

z

on the ith taxel of TLR
z , as shown in Fig. 3.

Thus, the effect of the ith taxel of the HR data on the jth taxel
of the LR data during the degradation process can be expressed
as

hi,j = exp

(
−

dis(tLR
i , tHR

j )

γ2

)
· 1

max(hi,·)
, (8)

where dis(tLR
i , tHR

j ) is the spatial distance between the two
taxels. The variable γ represents each taxel’s perceptual region
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Fig. 4. Diagram of proposed tactile PSF scheme with learnable PSF and
degradation parameters. The LR z-axis tactile data TLR

z is the input to three
fully-connected layers to predict parameters of α, β and γ, where α and β
describe the contact force at the current moment and are used in the PSF. The
HR tactile dataTHR

z is then obtained by convolving the depth IDepth of the contact
pattern with the PSF. The third parameter γ is used to describe the degradation
process.

during the degradation process. In this paper, we assume that
each LR taxel experience the same degradation, resulting in
the same γ for all taxels in the LR data during the degradation
process.

In this paper, we propose a tactile PSF scheme to obtain the
HR data with learnable PSF and degradation process parameters
as shown in Fig. 4. We adopt planar contact surfaces in this
research. As a result, a single PSF is used to describe the stimuli
for all points in a contact pattern. The z-axis data TLR

z , collected
by the tactile sensor, is directly related to the applied force Fu,v ,
and used as the input to the model. The parameters α, β, and
γ are estimated through a network with three fully-connected
layers. The first two parameters, α and β, describe the PSF. The
PSF is convolved with the depth to obtain a HR tactile pattern
THR

z , which is used as the ground truth in the new tactile pattern
SR dataset. The degradation process is uniquely determined by
γ, which describes the perceptual region of each taxel in the LR
sensor. The larger is γ, the larger is the perceptual area. Then,
the loss function can be defined as:

L(T̂LR
z ,TLR

z ) =
∥∥∥TLR

z − T̂LR
z

∥∥∥2
2
. (9)

Therefore, the objective function of the proposed tactile PSF
model is

< α̂, β̂, γ̂ >= arg min
α,β,γ

L(T̂LR
z ,TLR

z ), (10)

which aims at minimizing the difference between the predicted
Z-axis LR data T̂LR

z and that collected by the LR tactile sensor
TLR

z .

D. Generation of HR Tactile Patterns

The tactile PSF model is trained using the data collected in
Section IV (b). Fig. 5 illustrates the variation of PSF parameters
with the contact force for two different contact patterns. We
observe that α and β increase linearly with the force, where
α represents the increase in deformation on the individual taxel
and β denotes the increase of impacts applied to the surrounding
area. As the contact area of pattern1 is larger than that of

Fig. 5. Variation of PSF parameters in response to different contact patterns
and forces. As the sensor value increases, or the contact force becomes larger,
both α and β values for both contact patterns increase. Since pattern1 has a
larger contact area, its α and β values are smaller when the contact forces are
the same.

Fig. 6. Estimated PSF parameters are utilized to generate the PSF, depicting
the current contact force. Then, this PSF is convolved with depth image to
generate HR tactile patterns, which serve as the ground truth for tactile SR
model training.

pattern2, the latter exhibits higher α and β under the same
contact force, as shown in Fig. 5. These results are in line with
intuition and demonstrate the effectiveness of the tactile PSF
model.

The PSF represents the current contact deformation, which
is convolved with depth image to generate HR tactile pat-
terns, as illustrated in Fig. 6. The generated HR data serve as
the ground truth for training tactile SR model in Section V.
We employ the Mooney-Rivlin hyperelastic model to simulate
the sensor deformation, and regard the simulation result to be
precise representation of the deformation distribution of the
sensor surface.

We test 9 different contact surfaces on contact plate 1 at
the p5r0 position, as shown in Fig. 1(c), and compare the HR
data generated by three different methods with the precise HR
data obtained from FEM simulation, as depicted in Fig. 7. The
results indicate that for planar surfaces, our proposed tPSF more
effectively mimics the deformation distribution on the contact
surface than the other two methods. Additionally, we discover
that as the contact force increases, the blurring effect of the PSF
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Fig. 7. Comparison between HR data generated using different meth-
ods and the FEM simulation results. The tPSF method is introduced in
Section IV-C, while the PSF approach is described in [48], [49]. The ‘Depth’
method refers to the direct multiplication of depth with the contact force. The
horizontal axis represents sampling points. To compare the generated HR data
with FEM simulation results, we uniformly selected 10 sampling points from
the initial contact to the maximum contact force moment.

becomes more obvious, leading to a larger deviation between the
generated HR data and the FEM results. However, by restricting
the convolution area, the tPSF effectively reduces the impact
of Gaussian blur, thereby enhancing the model’s accuracy and
stability under varying contact forces.

In conclusion, we build up a new dataset for tactile SR, which
contains 648 contact patterns collected with different poses of
18 contact surfaces, as shown in Fig. 11.

V. TACTILE PATTERN SR MODEL

In this section, we demonstrate the proposed tactile SR model,
which is a data-driven model that allows a customized selection
of single or multiple LR inputs. This is different from Tac-
tileSRCNN and TactileSRGAN proposed in [20], where only
the Single-tapping SR (STSR) is performed.

The proposed tactile pattern SR scheme is illustrated in
Fig. 8, which is comprised of three key modules: the input
layer, the feature extraction layer, and the output layer. The input
layer performs up-sampling on the LR input data to increase its
dimensionality. A convolution layer is then applied to increase
the number of feature channels. The feature extraction layer
consists two parts, the pattern feature extraction and the force
feature extraction. We use a multi-scale residual block [52] to im-
plement the pattern feature extraction. The multi-scale residual
block employs a double bypass network, which can effectively
extract features at different scales and has been demonstrated
to be effective in [20]. The multi-scale residual block also
includes a batch normalization layer, which can improve the
convergence of the network, and prevent gradient disappearance
and explosion. However, since the batch normalization layer
normalizes the input data, it causes a loss of the force feature. To
overcome this shortcoming, we use a single residual block layer

without the batch normalization layer to extract the force feature.
This allows the model to converge quickly while retaining the
force feature, which is distinct from the TactileSRCNN model
proposed in [20]. Finally, the pattern and force feature are fused
in the output layer, and the resulting pattern is resized to match
the target resolution.

Since the proposed scheme allows a customized selection
of “tapping” actions, we define the corresponding algorithms
as Single-tapping SR (STSR) and Multi-tapping SR (MTSR),
respectively. The STSR only uses the x-,y- and z-axis LR data
collected at the current moment to predict the HR tactile pattern,
which share the same concept of single image super-resolution
task in computer vision. However, in contrast to single image
super-resolution, which generally focuses on recovering both
contours and textures information lost in LR images, the LR
data in the tactile filed contains much less information due to the
limited resolution of sensors. Therefore, we focus on recovering
the contours of the contact surface rather than the more intricate
texture information in this paper.

MTSR aims to predict the HR data on the contact surface
using the LR sequence data collected from multiple tapping
instances with different sensor poses. The tactile sensor (along
with the robot arm) rotates an angle of θ0 after the 1st tapping
as shown in Fig. 10, then rotates an angle of θ1 after the
2nd tapping, and so on, until reaches the maximum number of
allowance. We assume that a total of K tappings are performed.
The first K − 1 tappings reveal the shape information of the
contact pattern, while the Kth tapping is used to obtain the
force features of the contact surface in addition to the shape
information. To accomplish this, allK LR data acquired from all
tappings are fed into the pattern feature extraction layer through
up-sampling and convolution operations. The Kth LR data is
then input into the force feature extraction layer, as shown in
Fig. 8.

In particular, the proposed scheme can achieve satisfactory
performance by using only one tapping instant i.e.K = 1, where
both the force and pattern features are extracted from the LR
tactile data collected within the single tapping process.

VI. EXPERIMENTAL RESULTS

The system setup is shown in Fig. 1(a). We utilize a 4× 4
taxel-based sensor to collect LR tactile data. In order to present
the performance of the proposed tactile pattern SR scheme,
we compare it with the conventional Bilinear interpolation
algorithm, as well as the state-of-the art TactileSRCNN and
TactileSRGAN developed in [20], with respect to the contact
surface within the dataset and the real-world cases. In this paper,
we set the maximum tapping number in the MTSR algorithm as
7, and θ0 = θ1 = · · · = θK = 5◦. The weights of the network
are initialized with the Kaiming initialization method [53] with
an Adam optimizer weight decay of 1e-2 and batch size of 8.

The depth and LR tactile patterns collected during data col-
lection are input into the trained tactile PSF model to obtain the
HR tactile pattern, which serves as the ground truth for the SR
model training. The contact surface was subjected to 36 distinct
contact patterns, each representing a single tapping event. For
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Fig. 8. Architecture of the tactile pattern SR model. The model consists of an input layer, a feature extraction layer, and an output layer. The leftmost block
represents the input layer, which transforms input data of varying dimensions into fixed-dimensional variables for the feature extraction layer. The middle block is
the feature extraction layer, composed of shape feature extraction and force feature extraction. The shape feature extraction extracts shape information from the
input features, while the force feature extraction extracts information about the contact force. The rightmost block represents the output layer, where the pattern
and force features are fused, and the output is resized to the desired resolution.

TABLE II
DATA SPLIT OF SINGLE TAPPING SR

each tapping, 16 LR tactile patterns are evenly selected from
the beginning of the tapping to the set contact force and used as
training data. The dataset is split as shown in Table II.

A. SR Evaluation Metric

In the image SR task, two metrics, Peak Signal-to-Noise Ratio
(PSNR) and Structural SIMilarity (SSIM), are commonly used
to measure the difference between the SR image and the ground
truth [54]. As the data formats of tactile patterns and images
are similar, we also adopt these two metrics to evaluate the
performance of tactile pattern SR.

1) Peak Signal-to-Noise Ratio (PSNR): It is defined by the
maximum sensor value (denoted as L) and the mean squared
error (MSE) between patterns. Given the ground truth of tactile
pattern T with N taxels and the reconstruction T̂ , the PSNR
between T and T̂ are defined as follows:

PSNR(T, T̂ ) = 10 · log10

(
L2∑N

i=1(t
i − t̂i)

)
(11)

where L denotes the maximum value of a single taxel of the
tactile sensor, and, L = 2 in this research. PSNR evaluates the
quality of the generated image by comparing the errors between
the corresponding pixels of two patterns.

2) Structural SIMilarity (SSIM): It is defined by measuring
the structural similarity between patterns, based on independent
comparisons in terms of intensity, contrast and structures.

μT =
1

N

N∑
i=1

ti

σT =

(
1

N − 1

N∑
i=1

(ti − μT )

) 1
2

σT T̂ =
1

N − 1

N∑
i=1

(ti − μT )(t̂
i − μT̂ ) (12)

where μT , σT are the mean and variance of tactile patterns, and
indicate the intensities and contrasts of the patterns. σT T̂ is the
covariance between T and T̂ . The SSIM between T and T̂ is
defined as follows:

SSIM(T, T̂ ) =
(2μTμT̂ + C1)(2σT T̂ + C2)

(μ2
T + μ2

T̂
+ C1)(σ2

T + σ2
T̂
+ C2)

(13)

where C1 and C2 are constants for avoiding instability (when
either μ2

T + μ2
T̂

or σ2
T + σ2

T̂
is very close to zero). Typically,

C1 = 0.01, C2 = 0.03.
For the evaluation of the tactile pattern, both PSNR and

SSIM are used to reflect the difference between the predicted
pattern and the ground truth. PSNR considers the differences in
both shape and force distribution, while SSIM focuses primarily
on the difference in shape. Higher values of PSNR and SSIM
indicate a smaller difference between the predicted and the actual
patterns.
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Fig. 9. Experimental results with different tactile pattern SR algorithms. (a ∼ c) are the data in the test set, where (a,b) have the same contact pattern, but different
contact forces. (d ∼ g) are the contact surfaces included in the data set, but the contact pattern is random (not included in the dataset). MTSR-2-5 and MTSR-2-10
represent two-times tapping with 5◦ and 10◦ tapping interval, respectively. MTSR-4 means four-times tapping with 5◦ tapping interval. The input LR data of MTSR
shows the LR data of last tapping. The corresponding PSNR and SSIM results are displayed below the figures.

B. Performance Evaluation Scenario I: Cases Based on the
Dataset

We compare the proposed scheme with the bilinear inter-
polation algorithm, TactileSRCNN and TactileSRGAN [20]
with a SR scaling factor of 10 (which means a tactile pattern
SR from 4×4 to 40×40). Experimental results are shown in
Table III and Fig. 9 We can see that the proposed STSR and
MTSR outperform all compared schemes in terms of PSNR and
SSIM performance.

1) STSR: Comparing the STSR with TactileSRCNN and
TactileGAN developed in [20], we can conclude that the pres-
ence of pattern and force feature extraction layer allows the
proposed model to preserve force features while predicting the
shape of the contact pattern, and therefore contributes the most
to the performance enhancement.

TABLE III
RESULTS OF DIFFERENT SR ALGORITHMS ON VALIDATION AND TEST SETS,

AND THE SR SCALE FACTOR IS 10
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Fig. 10. Trajectory of the tactile sensor in the MTSR. The robot arm slowly
descends along the Z-axis until the sensor reaches the object. After completing
the first tapping, the robot arm returns to its initial position and then rotates θ0
for the next tapping.

Fig. 11. Exemplar of the new dataset. (a) Depth of contact patterns in the
dataset. The tactile sensor makes contact with the surface in different poses,
each pose corresponding to a unique contact pattern. A total of 648 contact
patterns, collected from 18 contact surfaces, are included in the dataset. (b) The
depth remains constant throughout a tapping process, and LR sequences are
collected to generate HR data using the proposed tactile PSF.

In addition, we discover from Table IV that the proposed
scheme can achieve satisfactory performance with respect to
different scaling factors, which indicates that the proposed SR
model can effectively recover the primary information such
as the contours of the contact surfaces. We should admit that
the proposed scheme struggles to predict the more intricate
texture information due to the LR inputs of taxel-based sensors.
Fortunately, a fine texture reconstruction is unnecessary in many
robotic applications (e.g. grasping), where the contour of the
contact surface and to-be-applied force are important to task
success.

2) MTSR: The proposed STSR approach demonstrates
promising performance for the SR of contact surfaces in the

TABLE IV
RESULTS OF STSR ON VALIDATION AND TEST SETS WITH DIFFERENT SR

SCALE FACTORS

Fig. 12. PSNR and SSIM results of MTSR (K = 2) with respect to different
rotation angles (scaling factor p = 10, denoting a resulting tactile pattern
resolution of 40 × 40). Two dashed lines represent the corresponding results
of STSR.

dataset. However, there are instances, such as in Fig. 9(f) and (g),
where the input LR data are nearly identical, resulting in difficul-
ties to distinguish the corresponding contact patterns accurately.
To address this challenge, we propose the MTSR strategy, which
improve the prediction accuracy by collecting additional data
through multiple samplings of the contact surface, as described
in Fig. 10.

A natural question to ask is what is the best rotation angle
between two tapping instance in the MTSR scheme? We il-
lustrate the PSNR and SSIM results of MTSR when K = 2
(denoting the number of tapping actions) and SR scaling factor
p = 10 with respect to rotation angles of 5◦, 10◦, 15◦, 20◦, 25◦,
and 30◦. The experimental results are shown in Fig. 12. We can
observe a slightly increase followed by gradual declines in the
performance as the increase of the rotation angle θ. According to
Fig. 12, the proposed SR model achieves the best performance
when θ = 10◦ in the test set (but not necessarily in real-world
cases). Intuitively, a suitable small interval between two tapping
instances allows the SR model to extract useful information
effectively. Without loss of generality, we set θ = 5◦ in the
following experiments.

Fig. 13 presents the PSNR and SSIM performance of the
proposed scheme with respect to different numbers of tapping
instances. We can observe that there is a significant performance
enhancement in MTSR when K = 2 compared with the STSR.
However, the improvement becomes steady when K > 2. This
indicates that two tappings are sufficient to predict the shape of
contact surfaces in the dataset effectively. This observation will
not hold for real-world cases, which will be demonstrated in the
next section.

Authorized licensed use limited to: IEEE - Staff. Downloaded on June 26,2025 at 14:14:39 UTC from IEEE Xplore.  Restrictions apply. 



WU AND LIU: INTEGRATING POINT SPREAD FUNCTION INTO TAXEL-BASED TACTILE PATTERN SUPER RESOLUTION 647

Fig. 13. PSNR and SSIM performance of the proposed SR scheme in the test
set in terms of number of tapping instants.

Fig. 14. Illustration on the variation of SSIM performance of the proposed
scheme under different contact conditions.

With small contact force, the sensor and the contact surface
are in a state of fresh contact during the tapping process, which
results in a significant impact of sensor noise on the model
performance. As shown in Fig. 14, when the contact force is
small, the predicted shape of the SR model fluctuates greatly
due to the influence of sensor noise and other factors in the
case of STSR. However, the MTSR approach can effectively
remove the noise interference by leveraging the information
from previous tappings, enabling the proposed SR model to
maintain a satisfactory performance even for the small contact
force scenario.

C. Performance Evaluation Scenario II: Real-World Cases

In this section, we demonstrate the experimental results of
the proposed SR scheme in real-world cases where all contact
surfaces are not included in the dataset.

1) Force Recovery: One key contribution of the proposed SR
scheme lies in the guarantee of accurate force recovery while
contact pattern shape reconstruction. This outcome strongly
outperforms the TactileSRCNN and TactileSRGAN algorithms
developed in [20], as shown in Fig. 15. In [20], the dataset only
include LR-HR data pairs at the maximum contact force as the
sensor touches the object. In this paper, we employ the PSF
method to generate a series of LR-HR pairs from the initial con-
tact to the maximum contact force moment. We also strategically

Fig. 15. Illustration of force recovery performance. At t=7.5 s, the sensor
starts the tapping action and moves toward the contact object. At t=10 s, the
sensor reaches the set threshold and remains in contact for 5 seconds before
lifting vertically away from the object.

Fig. 16. Experimental result of contact surface not in dataset. Below the
pictures are the corresponding PSNR and SSIM results.

design the force feature extraction layer in the proposed scheme
to enhance the performance.

In this study, we did not directly predict the HR force map
of the sensor surface. Rather, since the ground truth generated
by tPSF is the Z-axis deformation map of the sensor surface,
the SR models predict the deformation data of the sensor under
different contact forces. The deformation map is usually posi-
tively correlated with the applied force, with larger deformation
typically indicating larger force.

2) Shape Recovery: A key task of the proposed SR model
is to accurately reconstruct the shape of contact patterns using
LR data. Our experiments reveal that the proposed model can
effectively recover the shape of contact surfaces that are similar
to those in the dataset or that have clear and distinguishable
tactile features. Unfortunately, the performance of the proposed
scheme degrades when the contact surface is beyond the gener-
alization ability of the proposed scheme. In Fig. 16, we present
three contact surfaces out of the dataset. The tactile features
of pattern2 are relatively simple, while pattern3 resembles a
contact surface present in the dataset. Hence, the proposed
scheme achieves a better shape recovery of these two contact
patterns compared with that of pattern1, where the limited input
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data obtained from a single tapping leads to an unsatisfactory
prediction of the contact shape. As the number of taps increases,
the prediction result becomes more accurate, demonstrating
that multiple tapping instances can provide more meaningful
information on the contact surface and thereby improve the
generalization performance of the proposed model.

In conclusion, our experimental results demonstrate the ro-
bust generalization capabilities of the tactileSR model across
diverse scenarios. When the model encounters scenarios of
familiar contact surfaces but unknown poses, it consistently
exhibits high accuracy in HR data prediction, as presented in
Section VI-B. This robustness is vital for practical applications,
given the impracticality of training on all conceivable poses.
Furthermore, for entirely unfamiliar contact surfaces, our model
maintains a satisfactory performance, especially when these
surfaces bear resemblance to those in the training set, as shown
in Section VI-C. Nonetheless, it is important to acknowledge
that the model’s proficiency in accurately predicting interac-
tions with complex and unfamiliar surfaces remains limited.
To overcome this limitation, we have introduced the MTSR
approach, which enhances the tactileSR model’s generalization
by incorporating multiple tapping inputs. This method shows
promise in significantly improving the model’s adaptability to
complex and unfamiliar surfaces.

VII. CONCLUSION

In this paper, we presented a novel tactile PSF method that
can be utilized to efficiently simulate the deformation of the
sensor surface, which helped to generate HR tactile patterns with
scalable resolutions, and built up a new dataset with LR-HR
data pairs for tactile SR. We further proposed a novel tactile
pattern SR model by incorporating both shape and force feature
extraction layers into the feature extraction module. The input
layer of our SR model can be adjusted to accommodate multi-
tapping scenarios. We evaluated the proposed SR scheme within
the dataset as well as real-world cases, and obtained promising
results compared with traditional interpolation methods and the
state-of-the-art tactile SR algorithms (i.e. tactileSRCNN and
tactileSRGAN [20]).

In the MTSR scheme, we only considered an uniform rotation
angle θ for all tapping instances and all contact surfaces. In fact, it
is advisable to rotate from an optimal angle θbest to acquire more
valuable information with fewer tapping instances. In addition,
we may investigate how to use the prior information and LR
data from the first tapping to actively determine the next tapping
pose, so as to improve the accuracy and efficiency of shape
reconstruction.

However, we must acknowledge a limitation in this work,
particular in its application to non-planar contact situations.
The proposed tactile PSF method primarily focuses on planar
objects, leveraging a single PSF to simulate the deformation
distribution. This model may not accurately represent the com-
plex deformation distributions of non-planar objects like spheres
or cylinders. In our future work, we approximate non-planar
objects as consisting of multiple planar of different heights, each
of which we can use a individual PSF to describe. The number

of PSFs is determined by the geometry of the surface, which can
be described by the depth image. This advancement will enable
a more accurate characterization of contact forces in diverse and
non-planar tactile interactions, thus broadening the applicability
of our research in real-world scenarios.

In addition, investigating the correlation between the PSF,
depth image, and shear deformation, followed by the devel-
opment of shear deformation tactile pattern SR model is an
interesting topic for future work.
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