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Abstract—Medical palpation is a vital diagnostic technique
where practitioners assess a patient’s condition through tactile
examination. Advancements in remote health technologies should
emphasize supporting tactile/haptic modalities to enable some
aspects of physical examination to be conducted at a distance. In
thyroid examinations, differentiating nodule sizes is critical for
identifying malignant lumps.

This study investigates how palpation motion affects the
sensing performance of single-point normal force sensors in
detecting thyroid nodules. Using a phantom skin model with
lumps of varied sizes and depths, force data was captured
and visualized as a stiffness distribution (tactile imaging). The
captured lump shapes were compared to actual shapes using
Correlation Coefficient (CC), Mean Squared Error (MSE), and
Structural Similarity Index (SSIM) methods.

Results showed that single-point normal force sensors effec-
tively detect lumps, particularly during typical palpation motions
such as Poke and Push & Pull, with Poke consistently yielding
superior performance across various sizes and depths. However,
estimating lump shapes becomes increasingly challenging as
lump depth increases, regardless of the motion applied. These
findings emphasize the importance of motion in optimizing single-
point sensors for palpation and provide valuable insights for
developing sensorized gloves for clinical use, particularly in
remote healthcare systems.

Index Terms—Palpation, Tactile imaging, Force sensing, Re-
mote health, Thyroid examination.

I. INTRODUCTION

Palpation is a fundamental component of routine medical
examinations, serving as a critical tool for diagnosing a wide
range of physiological and pathological conditions [1]. This
technique relies on the practitioner’s ability to interpret com-
plex sensory inputs, primarily through the sense of touch [2].
Mastery of palpation requires extensive training and refined
skills, as it involves assessing tissue texture, consistency, and
deformability to detect abnormalities such as lumps, nodules,
or areas of tenderness. Traditionally, palpation has been a
hands-on procedure, forming a vital link between clinical
observation and diagnostic decision-making [3].

Fig. 1. A) Proposed remote health technology designed to address the shortage
of medical doctors. In a medical examination, a community nurse wears a
sensory glove to capture haptic sensations, which are transmitted to a medical
doctor at a remote location. B) Five major palpation techniques for thyroid
examination, identified from the analysis of 10 instructional videos intended
for medical students.

Despite its significance, the hands-on nature of palpation
presents notable accessibility challenges, particularly for pa-
tients who are homebound or reside in remote areas with
limited access to healthcare providers. These barriers often
result in delayed diagnoses, exacerbating healthcare inequities.
While telehealth has successfully addressed many aspects of
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healthcare accessibility, it struggles to replicate the tactile
feedback essential to palpation. This limitation underscores the
need for innovative approaches to supplement or replace the
tactile components of traditional palpation, ensuring diagnostic
capabilities are both accessible and effective.

One promising solution to this challenge is the development
of sensorized gloves. Such devices would enable community
nurses to perform palpation while capturing detailed tactile
data, which could then be transmitted to remote physicians
for evaluation (Fig. 1). This approach supports collaborative
diagnostics, preserving the critical tactile aspect in telehealth
contexts. For practical application, the ability to distinguish
lumps of varying sizes, stiffness, shapes, textures, and mo-
bility is essential. Detecting smaller lumps, which are often
more likely to be malignant—particularly in thyroid exam-
inations—is of particular importance [4]. Sensorized gloves
offer a potential pathway to bridge the gap between hands-on
palpation and telehealth, enhancing both diagnostic accuracy
and accessibility.

Previous research has demonstrated the feasibility of using
force sensors to detect lumps within tissues. For instance, Li
et al. developed an arrayed capacitive tactile sensing device
capable of capturing lumps with high resolution [5]. Their
device evaluated lump detection by applying pressure to the
surface of phantom tissue in a static condition. In contrast,
Beccani et al. [6] designed a wireless palpation probe, which
was mounted on a laparoscopic grasper and actively moved
across the liver’s surface to map stiffness and identify lumps.
Similarly, Li et al. [7] employed a tri-axial force sensor
mounted on a robotic arm to detect lumps within phantom
tissue. However, research exploring the effects of palpation
motion or comparing the effectiveness of different sensor
movements for lump detection is limited.

Tactile exploratory motion, a key component of human
touch, is effective in perceiving various object properties
[8]. For instance, employing multiple exploratory behaviors
during robotic tactile exploration significantly improved sur-
face recognition compared to using a single behavior [9].
Thus, understanding the sensing performance under different
palpation motions is crucial for optimizing lump detection.

In this study, we investigate how variations in touch motion
affect the sensing acuity of a normal-direction force sensor
while mimicking palpation motion in thyroid examinations.
Specifically, we address the research question: how effectively
can a single normal force sensing device capture lumps under
different palpation motions? Our goal is to determine whether
touch motion influences sensing performance in lump detec-
tion. To this end, we created phantom skin, captured force data
and displayed it under three distinct motions, visualized the
stiffness distribution as tactile imaging, and analyzed which
motion most effectively captured lump shapes. While this
approach does not involve active human touch, using a robotic
system ensures consistent conditions by excluding individual
differences such as finger size, damping, touch habits, and
posture. This study aims to identify current limitations of
single normal-direction sensors in palpation motions and to

provide insights for designing sensorized gloves or systems
for use in both human and humanoid robot palpation.

II. BACKGROUND

Our remote healthcare system focuses on thyroid exami-
nations as a model system, particularly on the detection and
assessment of thyroid nodules. A thyroid nodule refers to a
small mass in the thyroid gland located at the front of the
neck. While most nodules are benign, some can be malignant,
necessitating further diagnostic tests to determine whether
treatment is required [10]. Clinical studies report that thyroid
nodules typically range from 5 to 88 mm in diameter [11],
with depths ranging from 4 to 25 mm within the tissue [12].
Notably, smaller nodules are more likely to be malignant [4].
These findings highlight the importance of a sensing device
with high spatial resolution to detect small and deeply located
nodules [5]. Additionally, mobility is critical, as accurately
capturing the movement of nodules requires sensors with high
spatial and force resolution.

Several wearable technologies have been developed for
lump detection in healthcare applications. For example, Li
et al. introduced an arrayed capacitive tactile sensing device
capable of capturing lumps with high resolution [5], while
Pompilio et al. developed a wearable sensor to detect nodules
and identify anomalies in bones and rigid structures [13].
The applied force and hand movements during palpation can
vary significantly depending on the area being examined and
the type of examination [14]. However, insights gained from
sensing methods optimized for one region can often be applied
to other regions or diagnostic scenarios.

Prior research has established the specifications necessary
for tactile sensing technologies that aim to replicate the
sensory capabilities of the human hand. To emulate human
touch, a response time of 1 ms (equivalent to a 1000 Hz
response rate) is required [15]. Force sensing resolution should
range from 0.001 N to 0.085 N [16], with a force detection
range spanning 0.01 N to 10 N [17]. Spatial resolution should
range between 1 mm and 2 mm on a fingertip [18], [19]. The
required force ranges vary depending on the type of touch
interaction. Additionally, the human hand senses both normal
force (perpendicular to the surface) and shear force (parallel to
the surface) [20]. These two force components are integral to
haptic feedback systems, enhancing the perception of surface
shapes and geometries [21], [22]. The accuracy of force sensor
measurements is influenced not only by sensor specifications
but also by motion dynamics, including acceleration, velocity,
and dynamic forces [23], [24].

For evaluating lump detection beneath the skin and tis-
sue, mechanical imaging and stiffness distribution visualiza-
tion—collectively referred to as tactile imaging—are widely
utilized [5]–[7], [25]. Li et al. compared stiffness visualization
obtained using their sensor with that from other commercially
available high-resolution sensors to validate their device’s
ability to detect lumps [7]. Beccani et al. also visualized
pressure distribution and mechanical imaging to assess lump
detection efficacy [6]. Both studies captured lumps during
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motion, with Li et al. specifically examining lumps of varying
sizes (4–10 mm) at different depths in phantom tissue. They
visualized these findings using tactile imaging under varied
sensing depths [5]. In their approach, the sensor was placed
beneath the tissue, and homogeneous indentation was applied
from above. The static, arrayed sensor structure captured the
lump effectively.

However, a question remains: if a single-point sensor moves
across the tissue, can it detect lumps? Furthermore, how do
different movement patterns influence lump detection? These
questions motivate further exploration of dynamic sensing
methods for improved lump detection.

III. MEASUREMENT OF TACTILE IMAGING FOR
DETECTING LUMPS

This study investigates how different sensor movements
affect lump detection by recording force data and creating
tactile images to evaluate detection effectiveness.

A. Apparatus

Figure. 2 illustrates the complete setup of the force-
capturing system. The system consists of a motorized stage,
a force sensor (SingleTact Miniature Force Sensor, PPS UK
Ltd), and Web cameras (LogitechBRIO webcam, Logitech).
The motorized stage can move along the XYZ axes, and
the force sensor is attached to the tip of a fixed wand.
The scanning wand consisted of a 10 mm diameter flat tip,
with an 8 mm SingleTact force sensor mounted centrally.
This configuration approximates the average size of a human
fingertip contact areas [26].

The phantom skin is placed on the motorized stage, which
moves to bring the skin into contact with the sensor tip,
simulating palpation motion. Unlike a robotic hand actively
engaging with the phantom skin, this setup eliminates biases
related to finger posture and other sensor noise issues, such as
wiring artifacts. Thus, the fixed sensor and wand setup were
employed to focus purely on comparing sensing resolutions
under different movements.

The motorized stage and position tracking system are
similar to those of Yu et al. [27]. The motorized stage,
XYZ translation stage (FSL40, Fuyu Technology Co., China),
includes three Nema 17 stepper motors (BE069-3, Befenybay)
that provide a resolution of 0.011625 mm per step. We input
the trajectory in a Python based software on a PC, and with
serial communication, input trajectory is converted to the
displacement in an Arduino Due micro controller. The motor
divers (DM542T, OMC Corporation Limited, China) control
the stage based on the signal from Arduino.

The sensor’s location is tracked using a RGB Web cam-
era (Logitech BRIO webcam, Logitech) that detects a green
marker placed on the sensor. Three web cameras simultane-
ously capture the marker’s position to determine its X, Y,
and Z coordinates using a YUV colorspace tracking algorithm
supported by OpenCV [28]. The force sensor readings and the
marker’s X, Y, and Z positions are recorded simultaneously at

Fig. 2. A) The three-axis motorized stage enables the force sensor to make
contact with the phantom skin using three different movement patterns. B) A
force sensor is mounted at the tip of the wand, which is designed to mimic
the shape of a fingertip. C) Three web cameras track the position of the stage
by monitoring green markers located on the two sides and the top of the blue
stage. Each web camera tracks a each green marker.

Fig. 3. The phantom skin used for this measurement. The surface, edge, and
lump are made of Ecoflex, while the interior is filled with soft slime to mimic
the tactile sensation of tissue. Details of the fabrication process are provided
in a previous research project by Yu et al. [27]. There are two depth 11 mm
and 20 mm and in each depth of phantom skin, 10, 15, 20 mm diameter of
lump is included in the phantom skin

a frequency of 60 Hz. The resolution of the position tracking
is 0.3 mm in X, Y, Z position.

The SingleTact force sensor used in this study has an 8
mm diameter and a 0.3 mm thickness. It measures normal
forces with resolutions of 0.02 N and supports force ranges
of -5 to 10 N. In tactile interactions, human hands typically
exert a maximum force of approximately 10 N [29]. Medical
professionals’ palpation characteristics during thyroid exami-
nations show an average applied touch force of around 7 N.
The sensor’s range of -5 to 10 N, and its high resolution
make it well-suited for this study, and the thickness of the
sensor does not disturb interaction with the phantom skin in
palpation motions when it is attached on a finger pad. Thus,
we employed this commercial force sensor (resolution: 0.02
N; range: -5 to 10 N) for the measurements. The captured
analog signal from the force sensor is converted by the data
acquisition device (NI PCIe-6343, National Instruments, USA)
and stored as force [N] with the captured position.

The phantom skin used in this study (Fig.3) mimics human
skin, both with and without embedded lumps. This type of
phantom is fabricated with same process as previous palpation
and haptics research [27]. Based on clinical studies of thyroid
examination [11] and input from ENT doctors, lumps are
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classified as large (greater than 30 mm in diameter), medium
(approximately 20 mm in diameter), and small (less than 15
mm in diameter). These are located at average depths of 11
mm and a maximum 20 mm from surface of the skin to the
center of the lump. Therefore, for this study, we used lumps
of 20 mm, 15 mm, and 10 mm in diameter, positioned at
depths of 11 mm and 20 mm from the skin surface to the
lump center. The stiffness of the lumps was varied to represent
different clinical conditions. To replicate the stiffness of human
tissue, the lumps were made using Ecoflex 00-10 (Smooth-
On, Inc. PA, USA), the same material used for the skin and
edge regions of the phantom tissue. The lumps were fixed at
the base during fabrication. To minimize differences in size
and thickness, molds were employed during phantom skin
fabrication. Additionally, soft gel-like material was filled into
the phantom skin to mimic internal body tissue.

B. Identified Palpation Motion

In another study [30], we identified five primary pal-
pation motions (Figure 1B): ”Finger Crawl,” ”Push and
Pull,” ”Poke,” ”Symmetrical Assessment,” and ”Asymmetri-
cal Palpation” through the study of 10 palpation instruction
videos of thyroid examination and input from ENT doctors.
The ”Finger Crawl” involves alternating finger movements
to explore contours and structures, while ”Push and Pull”
combines pressure and gliding motions. ”Poke” applies direct
pressure to specific points, and ”Asymmetrical Palpation” uses
one hand for anchoring while the other performs dynamic
movements. ”Symmetrical Assessment” compares correspond-
ing sides of the body. Instead of capturing force under all
palpation motions, ”Push and Pull” and ”Poke” motions were
selected because they are compositional components of more
complex clinical motions such as ”Symmetrical Assessment,”
”Asymmetrical Palpation,” and ”Finger Crawl” [30]. Clinical
observation and physician feedback indicate ”Push and Pull”
and ”Poke” are employed independently and serve distinct
diagnostic purposes.

C. Tactile Imaging Measurement

The moving stage operates based on the specified trajectory
input. In this study, we measure the force generated during
three distinct movement patterns, designed to mimic “Trace,”
“Poke,” and “Push-and-Pull” hand motions. These movements
are referred to as Controlled Sliding, Poke, and Push & Pull
throughout this paper. Controlled Sliding, though not standard
in thyroid examinations, was included for comparison. The
trajectories for these movements are illustrated in Fig. 4. The
moving stage travels at a speed of 18 mm/s for all trajectories.

In the Controlled Sliding motion, the sensor first indents to
a depth of 7 mm (for 11mm depth of phantom skin) or 19 mm
(for 20 mm depth of phantom skin) and follows the trajectory
at this depth. Force data is captured at 1 mm intervals along
the trajectory to create a tactile image (Fig. 4A). In the Poke
movement, the sensor intermittently indents the surface by
7 mm/19 mm mm at each 1 mm interval along the trace
trajectory (Fig. 4B). Force measurements are recorded at the

Fig. 4. A) (Left) In the Controlled Sliding motion, the trajectory of the stage
begins at the red point and follows the blue line. (Right) During the movement,
force data is collected at the gray dots. B) In the Poke motion, at each gray
dot shown in A (Right), the sensor position indents from point a to point b.
During the movement, force data is collected at the green dots. C) In the Push
& Pull motion, the sensor position follows the sequence of a → b → c → d
→ b → a at each gray dot in A (Right). During the movement, force data is
collected at the green dots.

7 mm/19 mm mm depth during each poke to construct the
tactile image. For the Push & Pull movement, the sensor
alternates between indenting 7 mm/19 mm mm and moving
horizontally by 2 mm (Fig. 4C). Force data is collected during
the horizontal movement at the same 7 mm/19 mm indentation
depth to render the tactile image. Indentation depths of 7
mm and 19 mm were selected to reach the approximate
center of the embedded lumps, based on preliminary testing.
These values correspond to realistic interaction depths found
in thyroid palpation. The 7 mm indentation ensured effective
contact for 11 mm-deep lumps, while deeper indentation (19
mm) was required for 20 mm-deep lumps to overcome soft
tissue attenuation.

D. Analysis and Evaluation Methodology

To evaluate the performance of the force sensor in detecting
lumps embedded in phantom skin, we employed a method-
ology that compared stiffness maps, derived from captured
force distribution, to reference hemispherical shapes which
are lump shapes. The analysis began with the collection of
force distribution data, which was centered within a 20 mm
× 20 mm area. These force distributions were converted to
stiffness maps (tactile imaging) using the relationship k = F

x ,
where F represents the measured force and x is the constant
displacement from the original skin surface to the sensing
point. Reference shapes were modeled as hemispheres with
diameters of 10 mm, 15 mm, and 20 mm, truncated at a height
of 4 mm (in Phantom skin depth of 11 mm) or 1 mm (in
Phantom skin depth of 20 mm) from the base to match the
sensor’s detection range. These truncated hemisphere heights
were converted to a heat map which is the same resolution as
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Fig. 5. The tactile imaging represents the stiffness distribution in the X, Y position obtained from force measurements across 20 mm, 15 mm, 10 mm lumps,
and a no-lump condition. Measurements were captured under three different sensing point movements (Controlled Sliding, Poke, and Push & Pull) with depths
of 11 mm and 20 mm of the phantom skin. All tactile imaging results are trimmed to a 20 × 20 mm square. The color bar indicates stiffness values. For a
depth of 11 mm, the sensing point indentation is 7 mm across all movements, while for a depth of 20 mm, the sensing point indentation is 19 mm.

the tactile imaging and served as the ground truth for compari-
son with the tactile images. Each tactile image was interpolated
onto the reference shape’s grid to ensure precise alignment.
To evaluate the similarity between reconstructed and ground
truth lump shapes, we selected three complementary metrics:
Correlation Coefficient (CC), Mean Squared Error (MSE),
and Structural Similarity Index (SSIM). These were chosen
because CC captures spatial pattern similarity, MSE provided
a measure of absolute error, and SSIM assesses similarity by
analyzing structural consistency between the tactile imaging
and the heat map of reference shapes. They are widely used in
medical and tactile image analysis [31]–[35]. The combined
use of these metrics offered a comprehensive assessment of
sensor performance. CC highlighted spatial alignment, but
it did not account for magnitude or structural errors. MSE
emphasized accuracy in stiffness magnitude but was sensitive
to outliers. SSIM complemented these by capturing structural
fidelity, although it could overlook quantitative magnitude
errors. By integrating these metrics, we achieved a balanced
evaluation of spatial accuracy, magnitude fidelity, and struc-
tural similarity, providing a robust framework to validate the
sensor’s capability in detecting and characterizing embedded
lumps.

IV. RESULT

The aim of this study is to investigate how sensing motions
influence the capture of lumps in phantom skin. Lumps in
phantom skin were captured using three different motions.
Figure 5 illustrates tactile imaging, which visualizes the stiff-
ness distribution of varied lump sizes at different depths under

the three motion conditions. In the tactile images, regions
of higher stiffness indicate the captured lumps within the
phantom skin. For a lump at a depth of 11 mm, the lump is
visible in the tactile images when using the controlled sliding
motion (18 mm/s) and under other conditions as well. For
a lump at a depth of 20 mm, the captured lump remains
discernible under all three motion conditions.

To further examine how accurately the captured lump re-
sembles the actual lump geometry, we evaluated the sensing
performance under the three motions—Controlled Sliding,
Poke, and Push & Pull—using tactile images to represent
captured lumps in phantom skin. The comparison with heat
map of actual lump shape at the sensing point was con-
ducted using three metrics: Correlation Coefficient (CC), Mean
Squared Error (MSE), and Structural Similarity Index (SSIM).
The metric values for all lump sizes under the three motion
conditions are summarized in Table I (for a depth of 11 mm)
and Table II (for a depth of 20 mm). The evaluation criteria
were as follows: CC values closer to +1 indicate a strong
positive correlation, minimal MSE reflects higher accuracy,
and higher SSIM values signify closer similarity to the actual
lump geometry. Conversely, CC values close to 0 or negative
indicate poor correlation.

V. DISCUSSION

As shown in the tactile imaging results (Fig. 5), with palpa-
tion motions such as Poke and Push & Pull, a single normal-
direction force sensor successfully detected lumps measuring
20 mm, 15 mm, and 10 mm in diameter at depths of 11
mm and 20 mm within the phantom skin. According to a
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previous clinical study [12] and feedback from physicians,
the average depth of thyroid nodules is approximately 11 mm,
with a maximum depth of 20 mm. Additionally, lumps smaller
than 15 mm are typically classified as small. These findings
suggest that when a normal-direction force sensor is used
during palpation motions, detecting lumps is feasible in most
thyroid nodule cases.

In Fig. 5, the reconstructed shapes appeared narrower in the
x-direction. We hypothesize this may be due to anisotropic de-
formation in the phantom tissue during scanning. Specifically,
motion-induced lateral tissue drag could lead to shape skewing
depending on the scanning axis.

When evaluating how accurately the detected lump geome-
try resembled the actual lump, the Poke motion demonstrated
superior performance at a depth of 11 mm. It achieved the
highest positive correlation coefficients (CC) across all lump
sizes, the lowest mean squared error (MSE) for the 10 mm
lump, and the highest structural similarity index measure
(SSIM) for the same size. While the MSE values were similar
across all motions, the Controlled Sliding motion consistently
showed negative CC values, indicating poor correlation. The
Push & Pull motion performed moderately well but was
outperformed by the Poke motion in both CC and SSIM
metrics. At a depth of 20 mm, all three motions produced
negative CC values. The MSE values were higher, and the
SSIM values were lower compared to those at 11 mm. This
indicates that while the sensor can physically reach deeper
lumps, capturing their shapes becomes more challenging due
to the increased thickness of tissue between the lump and the
skin, which likely distorts the measurement.

The Controlled Sliding motion, while not part of the stan-
dard clinical palpation technique for thyroid examinations,
was included for comparative purposes. The results clearly
demonstrate why this motion is not used clinically. Across
both 11 mm and 20 mm depths, the Controlled Sliding
motion yielded negative CC values, higher MSE, and lower
SSIM across most lump sizes. These findings indicate that the
Controlled Sliding motion results in poor resemblance to the
actual lump geometry. This is likely due to the lateral motion
of the soft tissue and skin during sensor movement, which
causes the sensor’s contact point to shift. In this study, the
sensor tip was designed to mimic a human fingertip. However,
during lateral motion, both the skin and the underlying soft
lump moved along with the sensor, a phenomenon similar
to that observed with actual finger movement. Additionally,
lump detection during lateral motion depends heavily on the
extent to which the fingertip sinks into the skin to reach the
lump. These factors explain why controlled lateral motion is
not effective for thyroid examinations.

Overall, the results highlight that the performance of lump
shape detection using a single normal-direction force sensor
depends on the sensor’s motion. Among the tested motions,
the Poke motion was the most effective for capturing lump
shapes. However, when lumps are located in deeper tissues,
accurately capturing their shapes remains challenging. The use
of multi-point or multi-directional force sensors with higher

TABLE I
PERFORMANCE METRICS FOR EACH SENSING MOTION ACROSS LUMP

SIZES IN 11 MM DEPTH OF PHANTOM SKIN.

Method Lump (mm) CC MSE SSIM
Controlled Sliding 20 -0.2614 37.4664 0.1467
Controlled Sliding 15 -0.2019 11.1737 0.4769
Controlled Sliding 10 -0.0996 1.4190 0.8032

Poke 20 0.1824 37.4972 0.1569
Poke 15 0.1760 11.1795 0.4869
Poke 10 0.0593 1.4190 0.8150

Push & Pull 20 0.0990 37.5329 0.1495
Push & Pull 15 0.1005 11.1762 0.5057
Push & Pull 10 0.0933 1.4190 0.8039

TABLE II
PERFORMANCE METRICS FOR EACH SENSING MOTION ACROSS LUMP

SIZES IN 20 MM DEPTH OF PHANTOM SKIN.

Method Lump (mm) CC MSE SSIM
Controlled Sliding 20 -0.2652 38.2883 0.0929
Controlled Sliding 15 -0.1594 12.1135 0.3386
Controlled Sliding 10 -0.1004 2.3803 0.5395

Poke 20 -0.2425 38.2941 0.0931
Poke 15 -0.1173 12.0409 0.3353
Poke 10 -0.1237 2.3871 0.5419

Push & Pull 20 -0.1493 38.1515 0.0932
Push & Pull 15 -0.2124 12.1335 0.3376
Push & Pull 10 -0.1618 2.3941 0.5409

resolution could enhance sensing robustness and overcome
these limitations. In future studies, we plan to evaluate the
sensing performance of these advanced sensors. Furthermore,
we aim to investigate how well sensors can capture lump
geometry when attached to an actual finger in active touch.

VI. CONCLUSION

In this study, we investigated the capability of a single-point
normal force sensor to capture the shape of lumps in phantom
skin under three types of motions, including those mimicking
palpation touch. We generated tactile imaging and evaluated
performance using CC, MSE, and SSIM metrics.

The results of the tactile imaging demonstrate that the
single-point normal force sensor effectively detects lumps,
particularly under typical palpation motions such as Poke and
Push & Pull. Notably, the Poke motion consistently performed
better in detecting lumps of varying sizes and depths within
the phantom skin. Conversely, using a controlled sliding mo-
tion—uncommon in clinical palpation for thyroid examination
but common in scanning technology—yielded lower perfor-
mance in capturing lump shapes. These findings highlight the
importance of motion in optimizing the performance of single-
point normal force sensors during palpation. This knowledge
may contribute to the development of sensory gloves designed
for clinical palpation, particularly in remote health systems.
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