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Abstract—Robotic rehabilitation systems may benefit from
haptic rendering to provide sensorimotor training to patients
with acquired brain injuries. Haptic rendering usually involves
modulating stiffness and viscosity to simulate real-world hand-
object interactions. Yet, the effect of rendering different viscosities
on brain activity remains mainly unexplored. To fill this gap,
we ran an experiment with twelve unimpaired participants
who were asked to grasp and release virtual liquid dispensers
whose stiffness and viscosity were rendered using a haptic
hand rehabilitation robot. All liquid dispensers had identical
wall stiffness but contained liquids of three different viscosities.
We also incorporated control conditions without viscosity and
stiffness rendering, involving both passive and active grasping
movements. Electroencephalography data were recorded during
the experiment. We found stronger ipsilateral somatosensory mu
and beta event-related desynchronization during movements with
viscosity and stiffness rendering compared to the control condi-
tions, while different viscosity levels did not result in significant
variations. Furthermore, no significant electroencephalography
activity differences were found between control conditions. These
findings indicate that while viscosity and stiffness rendering
strengthens brain activity, modulating viscosity levels does not
significantly affect this response. This insight may contribute to
the design of rehabilitation games by informing the choice of
viscosity rendering parameters.

Index Terms—Haptic rendering, viscosity rendering, EEG,
proprioception, neurorehabilitation

I. INTRODUCTION

Using robots for neurorehabilitation is attractive because
they provide controllable, repeatable, and intensive training
while ensuring user safety [1], [2]. Robots are generally used
to physically assist the user’s limbs during movement training,
the so-called robotic assistance, thus alleviating physical strain
on therapists [3]. While promising, robotic training has been
shown to limit the recovery of functional movements needed
to perform activities of daily living (ADL) [4], crucial to
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regain independence. Many ADLs, such as carrying a cup of
coffee, require physical interaction with objects with complex
dynamics. Yet, this sensory information is usually missing
during robotic interventions [5]. Current solutions try to
compensate for the lack of somatosensory information by
relying on visual information from abstract visualizations on
computer screens. The result is that visuo-haptic incongruencies
worsen the persisting gap between the complex dynamics of
real-life objects and the simplified (or null) dynamics of virtual
objects [6].

Thus, a promising approach is to provide somatosensory
information from hand-object interaction using haptic rendering,
i.e., simulating the interaction forces of tangible virtual objects
to participants according to their dynamic models involving
virtual springs and viscosity [7]–[9]. Haptic rehabilitation
systems that provide enriched sensory experiences to enhance
motor learning are rapidly developing [9], [10]. Nonetheless,
the effects of augmented somatosensory feedback from haptic
rehabilitation systems—such as modifications to the dynamic
properties of objects used in ADL—on the central nervous
system activity and, thereby, the ability to enhance motor
learning, remain unclear.

One study specifically investigated the modulating effect of
spring-like interaction tasks on brain activity. The authors re-
ported increased somatosensory activity during tasks compared
to the rest period [11]. Other studies have used fixed loads to
investigate the modulating effects of forces during sensorimotor
tasks on electroencephalography (EEG) activity. They showed
that while the presence of the load enhances the sensorimotor
cortical activity, varying the magnitude of the load does not
significantly modulate the EEG activities in the mu, beta, and
gamma bands [12]–[14]. However, higher force requirements
specifically enhance contralateral mu band EEG activity in
the somatosensory cortex, reflected by increased event-related
desynchronization (mu-ERD) [15]. To our knowledge, the
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effect of different levels of viscosity on brain activity remains
unstudied. This is quite a limitation, as viscous fields have
been proposed as an effective method to provide participants
with an enriched sensorimotor experience of the trained task
that can challenge the motor system, reinforcing the neural
pathways that govern movement [16]–[18].

To address this limitation, we aimed to answer the following
research question: Does viscosity rendering during functional
tasks modulate activity in the somatosensory cortex? To answer
this question, we investigated how viscosity rendering during
grasping movements influences the EEG activity in the so-
matosensory cortex. We conducted a within-subject study with
12 unimpaired participants in which they squeezed a virtual
fluid-filled liquid dispenser with fixed wall stiffness and varying
fluid viscosities. The experiment included five conditions: two
control conditions with robotically-guided passive movement
and active movement without haptic rendering, and three
active movement conditions with haptic rendering and different
viscosity levels. We collected EEG, kinematic, and performance
data, along with questionnaires including the raw NASA-
Task Load Index (raw-TLX) [19] and additional questions
about perceived haptic rendering levels. The raw-TLX was
included since a high workload may affect performance and
proprioceptive sensation [20], [21].

We hypothesized that active movement conditions with haptic
rendering would induce greater activity in the somatosensory
cortex, reflected in increased mu-ERD and beta-ERD, compared
to the control conditions without haptic rendering. Additionally,
we expected that higher viscosity would result in further
increases in mu-ERD and beta-ERD.

II. METHODS

A. Participants

Twelve unimpaired adults (six male, six female) aged 22 to
29 (median age 25) from TU Delft participated in the study. All
participants self-reported being right-handed, healthy, and free
of proprioceptive deficits. The study was approved by the TU
Delft Human Research Ethics Committee (HREC, Application
ID 4428). All participants gave written informed consent and
received no compensation.

B. Experimental Setup

We employed the PRIDE haptic device developed by Rätz
et al. for upper-limb rehabilitation (Fig. 1A). PRIDE is a
one Degree-of-Freedom (DoF) device capable of fine haptic
rendering and supporting physiological full flexion/extension
of collective fingers, from the index to the little finger [22].
The device was controlled in Python 3.9.19 (Python Software
Foundation, United States) and ran at 500Hz [23], ensuring
high-quality haptic rendering [24], [25].

The viscosity exploration task was designed to provide the
experience of squeezing a liquid dispenser with different liquids
inside. The virtual environment was built in Unity 2020.3.25f1
(Unity Technologies, United States) and ran at 200Hz.

EEG recordings were acquired by asaLab 4.9.4 (ANT
Neuro, the Netherlands) with WaveGuard caps containing 128
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Fig. 1. Overview of the experimental setup. (A) Participants were sitting in
a soundproof cabin during the experiment, wearing an EEG cap and using
the haptic device while looking at the task visualization. (B) Front and top
view of the task visualization. The solid hand avatar followed the movements
of the participant’s fingers. The semi-transparent “ghost hand” provided a
visual guide for participants to move at the desired pace. The indicator sphere
attached to the ghost hand indicates the magnitude of the tracking error (yellow
for a large error). The two white dotted lines display the angular error between
actual and desired angular position, which is 45◦ here. Participants visualized
the task from a first-person perspective, as depicted on the left.

electrodes (ANT Neuro, the Netherlands) and TMSi Refa Ext
amplifier (TMSi, the Netherlands), using an average reference
and sampling at 2048Hz. The EEG amplifier was connected to
a trigger box developed using an Arduino UNO microcontroller
board (Arduino, Italy). The trigger box could receive commands
from the exploration task in Unity and then send pulses to the
corresponding trigger channels of the EEG amplifier.

C. Experiment Protocol

Participants were seated in a soundproof cabin with earplugs
to minimize noise. The correctly sized EEG cap was fitted, with
the ground electrode placed on the right mastoid. Electrode
gel was applied to reduce impedance below 5 kΩ.

During the experiment, participants sat in a comfortable chair
with wheels locked in front of a screen on the front wall. The
haptic device was securely attached to a table in front of them,
at a height that allowed participants to grasp it comfortably, as
shown in Fig. 1A. An appropriately sized handle (four sizes
available) was installed in the haptic device for each participant
based on their hand measurements. To simplify the task, the
thumb submodule was not used in this study, and the thumb
rested on the handle during the experiment.

Participants were instructed to open and close their hands, i.e.,
extending and flexing their fingers from 45◦ (finger extension)
to 145◦ (finger flexion), to squeeze a virtual liquid dispenser.
Here, the finger flexion/extension angle was defined as the angle
between the distal phalanx and the metacarpal of the index
finger. A hand avatar that moved following the movements of
participants’ real hands was visualized on the screen (Fig. 1B).
The virtual liquid dispenser was cylindrical and was located
in the palm of the avatar’s hand.

Participants were asked to complete one hand opening
and closing movement every two seconds. To guide them
in performing the task at the predefined trace and velocity,
a semitransparent “ghost hand” avatar opened and closed at

229



the desired velocity, providing visual guidance. The reference
finger flexion/extension angle followed a sinusoidal curve
y(t) = −50 cos(πt) + 95, where t is the elapsed time within
a trial. A semi-transparent reference sphere was attached to
the tip of the avatar’s index finger, and a solid sphere was
attached to the ghost hand. Participants were instructed to
move their hands in sync with the solid sphere indicator and
the ghost hand, ensuring they always overlapped. The solid
sphere changed colors to provide real-time feedback based
on the tracking error, i.e., the angular difference between the
respective spheres (green: acceptable, yellow: caution, red:
warning). To protect the haptic device from damage, virtual
soft stops located at 10◦ and 160◦ were added at both ends of
the device’s maximum range of motion (from 0◦ to 180◦).

The experiment included five different conditions: three
viscosity conditions and two control conditions. The appearance
of the liquids in the virtual environment remained the same for
all conditions to minimize the visual effect on sensation. During
the viscosity conditions, the liquid dispenser was assigned a
constant wall stiffness of K = 4N/m. The fluid in the liquid
dispenser was randomly assigned one of three viscosities,
which were approximated using damping coefficients (B):
B1 = 20N s/m, B2 = 50N s/m, or B3 = 90N s/m. We
determined these viscosity levels through a pilot experiment
to ensure distinguishable differences and utilize the haptic
device’s effective force output range. We also included two
control conditions: active and passive. During these conditions,
the stiffness and viscosity of the liquid dispenser were set
to 0. In the passive session, a Proportional-Derivative (PD)
controller (Kp = 0.08N/°, Kd = 1N s/°) passively moved the
participants’ fingers to follow the reference trace. During the
active session, participants were asked to actively move their
fingers following the sphere indicator and the ghost hand.

The experiment consisted of one familiarization cycle and
five regular cycles. The familiarization cycle was included
to allow the participants to practice the procedure and was
not recorded. Each cycle contained one perception-test trial,
two control trials, and 18 viscosity trials (six per viscosity).
During the perception-test trial, high viscosity rendering (B3)
was provided to confirm the haptic rendering was correctly
working. Then, the control conditions followed, including one
passive and one active trial in random order. For the viscosity
trials, the six trials per three viscosity levels were presented
in random order. Each trial lasted six seconds and covered
three complete opening and closing hand movements. For each
trial, a 5 s countdown was displayed on the screen before the
beginning. If the trial was the control condition, the condition
name and instruction were also shown. “Start” appeared at
the trial’s beginning and “Stop!” at its end. We included rest
periods between trials of 10 s to 15 s. Additionally, a longer
rest period of 30 s was enforced every five to eight trials. The
duration and time when the rest periods were enforced varied to
reduce anticipation and keep participants focused. Participants
were instructed to avoid blinking or unnecessary movements
during the countdown and trial periods.

After the experiment was completed, participants filled in a

questionnaire using the Qualtrics XM survey tool (Qualtrics,
USA). The first section included the raw Task Load Index
(raw-TLX) [19], while the second section asked participants to
what extent they could feel different levels of haptic rendering
and how many distinct levels they perceived. The total duration
of the experiment was around two hours.

D. EEG Analysis

EEG processing and analysis were conducted with EEGLAB
v2024.0 [26] on MATLAB R2021a (MathWorks) and MNE
1.5.1 [27], [28] in Python 3.9.19. As for preprocessing, EEG
recordings were downsampled to 256Hz before applying a
bandpass filter from 1Hz to 45Hz. A low-pass filter was
applied before downsampling, which is a built-in process of
the MNE package to prevent aliasing. Bad channels were
interpolated using the spline method. The EEG was re-
referenced to the average reference, and epochs were extracted
from two seconds before the trials started until their end. Bad
epochs with extreme values or fluctuations were removed using
criteria based on Iwane et al.’s work [29]. Preconditioned
independent component analysis (ICA) for real data (Picard)
was performed on the joined epochs of each participant. Using
the independent component (IC) labeling model mne icalabel
[30], [31] and manual inspection, ICs suspected to be eye
or muscle artifacts were removed, and the cleaned data was
reconstructed using the rest of the ICs.

After preprocessing, time-frequency representation (TFR)
was computed for each participant in each condition using the
Morlet wavelet transform with a 1Hz frequency resolution,
covering 1Hz to 40Hz. To quantify the changes in power,
we applied the Z-score baseline corrections to the TFR,
which involved subtracting the baseline mean and subsequently
dividing by the baseline’s standard deviation to obtain the
result. The baseline recording we used for each condition was
the rest period 2 seconds before the trial started.

Initially, a round of cluster-based permutation tests (CBPT)
with 1000 permutations was performed on the combined TFRs
of all conditions. The combined adjacency matrix used here
was calculated on the channels, frequencies, and time points.
The one-tailed F-test was used, with a cluster threshold set to
the critical F-value for a significance level of 0.05. Significant
clusters were identified with a p-value threshold of 0.05.

Next, CBPT with 1000 permutations was conducted on
paired conditions using the same adjacency matrix. The two-
tailed t-test was employed, with a cluster threshold at the
critical t-value for a 0.05 significance level. The Bonferroni
correction adjusted the p-value threshold for significant clusters
to 0.005, accounting for 10 paired comparisons. These tests
were also applied to two pre-selected regions of interest (ROIs)
with the same time range (during tasks) and electrodes over the
ipsilateral somatosensory cortex (‘C2’, ‘C4’, ‘C6’, ‘CCP2h’,
‘CCP4h’, ‘CCP6h’, ‘CP2’, ‘CP4’, ‘CP6’, ‘P2’, ‘P4’, ‘P6’). The
ROIs differed by frequency: one in the mu-band (8–13Hz) and
the other in the beta-band (15–30Hz).
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E. Behavioral Data and Questionnaires

During the experiment, the system logged data for each time
frame, including the timestamp, experimental condition, current
and desired finger flexion/extension angular position, finger
velocity, and force delivered to the fingers from the device.

The force rendered due to viscosity varies with velocity.
Therefore, to check that we performed a fair comparison of
EEG data between conditions, we first averaged the velocity
and commanded force profiles over the 6 s trials for each
participant and condition, then computed the mean and standard
deviations of these averaged profiles across all participants.
We also calculated each participant’s average tracking error,
i.e., the difference between desired and actual finger angular
position per condition, and pooled these for group comparisons.

We evaluated differences in tracking error between conditions
using a one-way ANOVA. Data normality and variance homo-
geneity were verified using Shapiro–Wilk and Levene’s tests.
If the ANOVA was significant, we performed post hoc analysis
with Tukey’s HSD correction. The significance threshold was
set to α = 0.05.

Regarding the questionnaire data, we calculated the median,
first quartile (Q1), and third quartile (Q3) for each subscale
of the raw-TLX questionnaire. We also summarized the extent
and number of perceived intensities reported by participants.

III. RESULTS

A. EEG Processing

On average, 3.67±2.67 (mean ± standard deviation) epochs
were removed per participant from a total of 100. For the
subsequent ICA, 2.25±0.97 ICs were removed per participant.

We selected two electrodes over the somatosensory cortex,
CP3 (left hemisphere) and CP4 (right hemisphere). The group-
level Event-Related Spectral Perturbation (ERSP) with Z-score
baseline is shown in Fig. 2A, where a clear mu-ERD is evident
on both hemispheres after task onset. The group-level mu and
beta ERD during hand movement on CP3 and CP4 under
different conditions are shown in Fig. 2B.

B. Cluster-Based Permutation Tests

The CBPT conducted on the full data range across all
conditions revealed one significant cluster (p = 0.001, the
lowest possible p-value with 1000 permutations). To visualize
this 3D cluster, we averaged the F-values across all channels
and obtained Fig. 3A. A topographic map summarizing the
probability of occurrence across time and frequencies is shown
in Fig. 3B. These results indicate a significant difference in
ERSP among conditions.

Paired tests between the passive and active control conditions
did not result in significant clusters. However, we found one
significant positive cluster when comparing the passive control
condition to each viscosity condition (all p = 0.001) and
when comparing the active control condition to each viscosity
condition (all p = 0.001).

For the mu-band ROI, one significant positive cluster was
found for each pair that compared the passive control condition
with the middle (p = 0.001) and high (p = 0.001) viscosity

conditions, as well as the pairs that compared the active control
condition with the low (p = 0.003), middle (p = 0.001),
and high (p = 0.002) viscosity conditions. No significant
cluster was found in comparisons between the three viscosity
conditions or between the control conditions.

For the beta-band ROI, one significant positive cluster was
found for each pair that compared the passive control condition
with the low (p = 0.003), middle (p = 0.001), and high
(p = 0.002) viscosity conditions, as well as the pairs that
compared the active control condition with the low (p = 0.001),
middle (p = 0.001), and high (p = 0.001) viscosity conditions.
No significant cluster was found in the tests between the three
viscosity conditions or between the control conditions.

C. Behavioral Data

For observational comparison proposes, the finger flex-
ion/extension velocities and the forces applied to the fingers
by the haptic device over time are plotted in Fig. 4, with
their average and standard deviation. Positive forces in the
viscosity conditions depict resistance while squeezing the
virtual liquid dispenser. The negative forces during the passive
control condition depict the assistance to close the hand, while
the positive forces are a result of the assistance to open the
hand. Ideally, the rendered forces during the active control
condition would be constant at 0N; the positive fluctuations
that can be observed originate from the soft-wall constraint
protecting participants and the haptic device when approaching
the safe operating limit.

The ANOVA test revealed significant differences in the
tracking error among the conditions (F = 13.22 and p <
0.001). In particular, we found the tracking error of the active
control condition is significantly higher than the low viscosity
condition by 5.01◦ (the difference in means between the two
groups, p < 0.001), than the middle viscosity condition by
5.28◦ (p < 0.001), and than the high viscosity condition by
4.25◦ (p < 0.001). Meanwhile, the tracking error of the passive
control condition is significantly higher than the low viscosity
condition by 2.87◦ (p < 0.05) and than the middle viscosity
conditions by 3.14◦ (p < 0.01).

D. Task Demand and Perceived Haptic Feedback

The overall raw-TLX subscale scores (0–100) among condi-
tions and participants were as follows: Mental demand (median:
27, Q1: 18, Q3: 33); Physical demand (median: 17, Q1: 6.5,
Q3: 37); Temporal demand (median: 17, Q1: 1, Q3: 28.25);
Performance (median: 80.5, Q1: 78.5, Q3: 86.25); The effort
required (median: 24, Q1: 14, Q3: 37.5); Frustration levels
(median: 5.5, Q1: 0.75, Q3: 15.75). According to Hertzum
[32], scores below 35 indicate low demand, while scores above
56 indicate high demand. In most cases, our task resulted in
reported low demands (mentally, physically, and temporally),
with low confusion levels and high performance expectations.

After the experiment, nine out of 12 participants reported
“definitely yes” when asked if they could feel different levels of
haptic rendering, while two responded “probably yes,” and one
reported “might or might not.” None chose “probably not” or
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Fig. 3. The significant cluster of the CBPT on the full data range across all
conditions. (A) TFR of the significant cluster, averaged over the electrode
dimension. (B) Topographic map of the significant cluster averaged over time
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(A) and commanded force (B) during a 6 s trial for each condition across
all trials and participants (see Section II-E). A trial included three openings
and closings of the hand. The dotted line in (A) represents the target velocity
profile. In both subplots, P denotes the passive control condition; A represents
the active control condition; L, M, and H mean the low, middle, and high
viscosity conditions, respectively.

“definitely not.” Regarding distinct haptic rendering levels, five
participants reported experiencing three levels, three reported
four levels, and four reported five levels.

IV. DISCUSSION

A. Viscosity and Stiffness Rendering Relate to Stronger Mu
and Beta ERD in the Ipsilateral Somatosensory Cortex

From the result of CBPT, we observed that both mu-ERD
and beta-ERD in the ipsilateral somatosensory cortex were

significantly stronger when viscosity and stiffness rendering
were present, compared to active movement without haptic
rendering or passive movement, except the mu-ERD when com-
paring the low viscosity condition with the passive movement.
These findings align with our first hypothesis, suggesting that
incorporating proprioceptive feedback in the form of forces
applied to muscles and joints elicits a higher brain response
than movement and position proprioception alone.

Previous studies have demonstrated that transcallosal in-
hibitory interactions, reflected in the ipsilateral sensorimotor
cortex as mu-ERD and beta-ERD, can suppress unintended
movements of the contralateral stationary limb [33], [34]. These
inhibitory mechanisms can also be involved in motor control
of the active limb, as evidenced by a positive correlation
between ipsilateral cortical activation and hand movement
speed [35]. The enhanced ipsilateral cortical activity observed
in our conditions featuring stiffness and viscosity rendering
aligns with this view, providing further support for the role of
ipsilateral activation in the control of the moving hand.

Our findings also reveal that regions with significant mu-ERD
and beta-ERD differences were concentrated in the ipsilateral
somatosensory cortex. In the contralateral somatosensory cortex,
strong ERD activity was observed under all conditions, but the
intensity differences between conditions were less pronounced.
While the precise neural mechanisms underlying contralateral
mu- and beta-band oscillations in sensorimotor tasks are not yet
fully understood, these results are consistent with the findings
in previous work [29], [36], suggesting that contralateral
sensorimotor activation may reach a saturation level.

Although we gave the same movement instruction for all
conditions, we observed that the average tracking errors were
significantly lower under viscosity conditions than control
conditions. The difference in tracking error may also affect
our results, since the ERD can also reflect the motor execution
process, and lower tracking errors may indicate an easier
execution process that requires less mental effort.

232



B. No Significant Evidence Was Found that Rendering Higher
Viscosity Leads to Stronger ERD

Most participants reported perceiving differences in feedback
intensity according to our questionnaire, and the differences in
the applied forces during the different viscosity conditions are
also evident in Fig. 4B. Moreover, the raw-TLX questionnaire
suggests that our experiments involve low task demands, which
mitigate the influence of high workload on performance and
proprioceptive sensation [20], [21]. Yet, our EEG analysis
revealed no significant difference in brain activity across viscosi-
ties, rejecting our second hypothesis. This aligns with studies
using fixed loads to modulate proprioceptive sensation, which
reported that applying different loads during sensorimotor tasks
does not significantly affect mu, beta, or gamma band activity
in the sensorimotor cortex [12]–[14]. Therefore, we suspect
the information about the proprioceptive sensation level may
be encoded in deeper brain structures, such as the cerebellum,
basal ganglia, and deeper layers of the primary motor cortex,
which EEG can hardly capture. We suggest further study on this
using fMRI or other modalities with better depth resolution.

However, our results do not align with those from
Nakayashiki et al., who found increased mu-ERD in the
somatosensory cortex with higher grasping forces [15]. This
discrepancy could stem from differences in the experimental
designs. Their study focused on a stationary grasping task,
primarily involving static force perception, whereas our dy-
namic squeezing task involved movement. Such movement
may have heightened proprioceptive input and elevated the
sensory baseline, potentially obscuring significant variations
in mu-ERD. Similarly, Ortega et al. found no correlation
between grip force and mu-ERD averaged over the trial.
However, they observed a negative correlation between the
force and mu-band signal intensity during the onset phase
[37]. We did not observe differences at the movement onset,
probably because our experiment included a five-second
countdown that allowed participants to anticipate the task,
potentially mitigating mu-band desynchronization during the
onset phase. This may indicate that the mu rhythm plays a role
in perception preparation. Additionally, since the beta rhythm
is known to be involved in movement preparation [38], it is
unsurprising that neither Ortega et al. nor we found significant
differences in beta-ERD during the onset phase. In both studies,
movement patterns remained consistent within each experiment,
minimizing perception differences and likely contributing to
the observed stability in beta-ERD during the onset phase.

C. No Significant Difference Was Found between Active and
Passive Control Conditions

The CBPT across the full data range revealed no significant
difference between passive and active control conditions when
haptic rendering was not provided. Similarly, Qiu et al. reported
no significant difference in beta-ERD strength between active
and passive lower limb movements, despite differences in
characteristic frequencies [39]. Keinrath et al. also found no
significant difference in mu-ERD strength during active and
passive upper limb movements [40]. These findings suggest

that mu-ERD and beta-ERD are insensitive to motor intention
but reflect proprioceptive sensations from movements, whether
self-initiated or externally applied.

Formaggio et al. similarly observed ERD similarities between
active and passive hand movements but noted pre-movement
alpha synchronization (in the mu-band frequency range) during
active movement only [41]. In our experiment, we did not
capture this pre-movement difference. Also, there was no
advance notice of the upcoming movement in Formaggio et al.’s
experiment. Therefore, we still speculate that this phenomenon
is caused by perceptual preparation.

D. Limitations and Future Work

In our experimental design, participants entered the rest
periods immediately after completing each trial. Consequently,
the EEG signal for each epoch was truncated immediately after
the task, preventing analysis of post-movement components
such as mu rebound, beta rebound, and prolonged ERD.
Future experiments should include instructions to remain still
for a few seconds post-task to capture these components.
Additionally, the control conditions included fewer trials than
the viscosity conditions, and the control conditions were always
presented first, potentially reducing the signal-to-noise ratio
and introducing order effects. Increasing the number of trials in
control conditions and interspersing them between the viscosity
conditions would enhance data quality and reduce order effects.
Further, the number of participants and the homogeneity of
the cohort limit the statistical power and generalizability of the
results. Specifically, all participants were young and unimpaired
university students, which differs from the intended target group
of individuals with ABI. This limits ecological validity, and
the results may not fully carry over to clinical populations.
Regarding EEG processing, analysis in this study was limited
to the channel level due to time and computational constraints.
While channel-level analysis remains common in related studies,
the crosstalk phenomenon may prevent channel signals from
fully reflecting underlying brain activity [42]. Future studies
should incorporate source localization methods when feasible
to improve accuracy.

V. CONCLUSION

In this study, we investigated changes in EEG activity
during active grasping movements with fixed stiffness and
different viscosity levels. We also evaluated the differences
between active movement without haptic rendering and passive
movement. We observed that the presence of viscosity and
stiffness rendering led to stronger mu-ERD and beta-ERD in
the ipsilateral somatosensory cortex during movement, although
no significant difference was found between different viscosity
levels. Additionally, no significant difference was observed
between the passive movement and the active movement
without haptic rendering. These findings suggest that the
existence of proprioceptive feedback caused by viscosity
and stiffness rendering has a potential enhancing effect on
somatosensory cortex activity, highlighting its importance in
rehabilitation.
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