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TexSenseGAN: A User-Guided System
for Optimizing Texture-Related Vibrotactile

Feedback Using Generative Adversarial Network
Mingxin Zhang , Shun Terui, Yasutoshi Makino , and Hiroyuki Shinoda

Abstract—Vibration rendering is essential for creating realistic
tactile experiences in human-virtual object interactions, such as in
video game controllers and VR devices. By dynamically adjusting
vibration parameters based on user actions, these systems can
convey spatial features and contribute to texture representation.
However, generating arbitrary vibrations to replicate real-world
material textures is challenging due to the large parameter space.
This study proposes a human-in-the-loop vibration generation
model based on user preferences. To enable users to easily control
the generation of vibration samples with large parameter spaces, we
introduced an optimization model based on Differential Subspace
Search (DSS) and Generative Adversarial Network (GAN). With
DSS, users can employ a one-dimensional slider to easily modify the
high-dimensional latent space to ensure that the GAN can generate
desired vibrations. We trained the generative model using an open
dataset of tactile vibration data and selected five types of vibrations
as target samples for the generation experiment. Extensive user
experiments were conducted using the generated and real samples.
The results indicated that our system could generate distinguish-
able samples that matched the target characteristics. Moreover, we
established a correlation between subjects’ ability to distinguish
real samples and their ability to distinguish generated samples.

Index Terms—Haptic display, human-computer interaction,
optimization, deep learning, autoencoder, generative adversarial
networks.

I. INTRODUCTION

V IRTUAL realm built by information technologies has be-
come an integral part of our daily life. Among various

interaction technologies, haptics, which enables natural and
intuitive tactile interaction with virtual objects and surfaces,
allows users to engage with this information-rich virtual world
and improves the user experience [1], [2]. In the research
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field of haptics, the rendering of texture of objects has been
an important topic to augment the user experience in virtual
reality (VR) or other application scenarios [3], [4], [5]. Texture
stimuli are characterized by spatially and temporally correlated
signals. Many studies have modeled this kind of stimuli using
parameters like velocity, direction, and force, often employing
approaches such as auto-regression models [6]. Furthermore,
research has shown that realistic tactile feedback can be achieved
even using only temporal stimuli, such as vibrations [7], [8]. In
this study, we propose a new framework for generating arbitrary
vibration waveforms with the aim of presenting texture related
feedback.

Currently, common vibration presenting methods include
playing back vibrations recorded using sensors or microphones,
and manually designing vibration waveforms through tools like
equalizers. While manual design is valuable in scenarios where
direct measurement is unavailable, such as video games or
when enhancing specific tactile sensations, it is limited by the
complexity of simultaneously adjusting multiple parameters [3],
and the diversity and abundance of tactile textures in the physical
world can also make this kind of adjustment impractical to create
specific models for each texture.

To address these challenges, studies have explored recon-
structing vibrations using variety methods like generative mod-
els [4], [9], optimizing objective functions and delivering ef-
fective results. However, human subjective perception often
diverges from mathematical metrics or direct parameter ad-
justments, making it beneficial to let users guide the gener-
ative process for tasks involving subjective evaluation. This
human-in-the-loop approach incorporates human judgment and
preferences into optimization, enabling models to produce re-
sults that align with individual perceptions [9], [10], [11].
These mentioned points highlight the importance of devel-
oping a system capable of intuitively generating vibrations
and dynamically accommodating a wide range of vibration
patterns.

As mentioned above, adjustment of vibrotactile signals with
multiple parameters manually is a challenging task. Techniques
like Sequential Line Search (SLS) [10] allow users control
multiple parameters via a 1-D slider simultaneously, making
the process more practical. However, this kind of conventional
Bayesian optimization approaches may struggle with complexi-
ties, especially in scenarios where we want to use deep learning
models with a better generalization performance.
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Fig. 1. The structure of our optimization system. Users can easily control the high-dimensional latent vector with a 1-D slider, and the generator can give
spectrograms according to the latent vector. Users can compare the tactile sensation of the generated vibration and the real target, and update the optimizer by the
slider position corresponding to the closest result to the target.

In this study, we introduced TexSenseGAN, a user-driven
system combining Generative Adversarial Networks (GAN)
and Differential Subspace Search (DSS) to optimize vibra-
tion stimuli for subjective “texture-related sense” generation
(Fig. 1). A simple 1-D slider interface was developed to explore
the high-dimensional tactile latent space easily. Emphasizing
human perception, we integrated subjective preferences into
optimizing and evaluating tactile feedback. The experimental
results showed a 58% accuracy rate for distinguishing gener-
ated vibrations in a five-class task, compared to 74% for real
vibrations. A linear regression analysis revealed a correlation
between these accuracy rates, demonstrating the system’s ability
to recreate distinct vibration characteristics guided by user input.
Despite extensive research on human-in-the-loop approaches in
various interaction methods, their application in haptics remains
underexplored. We believe this work will contribute to the devel-
opment of more intuitive and realistic haptic feedback systems.

II. RELATED WORK

A. Vibration Tactile Presentation

Vibrotactile haptic devices have become a key focus in tactile
presentation systems. Several studies aim to replicate various
sensory experiences. For example, piezo actuators are used to
simulate physical button sensations on touchscreens, as demon-
strated by Sadia et al. [12]. Additionally, wearable devices, such
as FingerX [13], enhance the sense of object shapes in VR
environments.

Among the array of sensory modalities, the recreation of
tactile textures has garnered significant attention. Through the
capture of sound recordings while traversing real surfaces, the
corresponding texture-specific vibrations can be reproduced via
audio signals [7]. Nevertheless, note that this research under-
scores the necessity of meeting specific requirements in terms
of both time resolution and frequency resolution to effectively
replicate tactile sensations. Furthermore, it highlights the critical
role of parameter design in shaping the characteristics of the
vibrotactile signal.

B. Generative Neural Network

In addressing parameter design challenges in the domain
of vibrotactile texture reproduction, a variety of optimization
algorithms have been applied, as highlighted in recent

works [14], [15]. However, for scenarios involving a substantial
number of parameters, deep learning techniques, which recently
have seen significant advancements, have emerged as a more
effective solution for managing the intricate optimization aspects
of texture generation.

Autoencoders have been used in some studies for compressing
and reconstructing tactile signals owing to their straightforward
architecture and unsupervised training approach [16], [17]. Nev-
ertheless, the compression process can introduce oversmooth-
ing, resulting in the loss of fine-grained details, making autoen-
coders difficult to reproduce detailed texture related vibration
signals. Although increasing the dimension of the compressed
latent vector can solve the problem, it makes operations, such as
optimization, difficult. Therefore, the use of generative models,
rather than a decoder within the autoencoder framework, to
reconstruct vibration signals has become a prudent choice.

Generative Adversarial Networks, a kind of notable gener-
ative model, are widely recognized for their success in image
generation and are increasingly applied to tactile reconstruction
tasks [4], [9], [18]. A GAN consists of two main components:
the generator and discriminator. The generator produces samples
from a specified distribution, often Gaussian noise, while the
discriminator’s role is to distinguish between generated samples
and real ones. Through iterative training, the discriminator’s
ability to differentiate between genuine and generated samples
improves, which in turn enhances the generator’s capability to
produce increasingly realistic samples.

The remarkable generative capabilities of GAN enable it to
generate samples from random noise as well as from specific
distributions, affording controlled sample generation opportu-
nities. For example, prior research has explored the generation
of surface images from vibrations [19], and conversely, the
generation of vibration signals from texture images [4], [18].
This characteristic of GAN, which encompasses reconstruction
as well as the generation of “new” samples conforming to a
particular distribution while introducing variations, positions
GAN as particularly well-suited for optimization problems in
which we seek optimal solutions through continuous exploration
of the latent space.

C. Human-in-The-Loop Optimization

While GANs excel at generating samples that mathematically
resemble real data, in some human evaluation conditions they
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Fig. 2. The structure of the GAN model in this research. The model can generate vibrotactile spectrograms from the latent space built by the ResNet-50 encoder.

do not inherently account for subjective cognition. In particular,
we need to determine whether a small loss value equates to
a similar perception or cognition. Basic computational metrics
can highlight statistical differences between generated and real
samples but fail to capture human subjective perception of qual-
ity. Research has been conducted to improve GAN architectures
and use better loss functions to track training progress, reducing
the need for developers to stare at generated samples to figure
out failure modes [20]. However, the study acknowledges that
they do not provide a full quantitative evaluation of generative
models. More broadly, the challenge of quantitatively evaluating
GAN performance is still an open problem, with no standard
metrics agreed upon [21]. This highlights a gap between sta-
tistical measures of “realness” and human subjective judgment,
especially in tasks like image and audio generation where human
perception still plays a key role in evaluation. Consequently,
various studies have focused on optimization models incorpo-
rating a human-in-the-loop mode, which integrates human in-
volvement into the iterative optimization process. This approach
utilizes human expertise to guide the optimization direction.

Some human-in-the-loop systems focus solely on direct pa-
rameter optimization [22] of several parameter dimension, while
other explored optimization algorithms, such as Bayesian opti-
mization [10], [15], to enable simultaneous control of multiple
parameters. Furthermore, to overcome challenges when dealing
with relatively large latent spaces, there have been some studies
applying deep learning models in the optimization process to
increase the capability of parameter dimension [9], [11]. An-
other significant challenge in the optimization of deep learning
models originates from the difficulty of incorporating human
decision-making throughout several training epochs [9].

A previous research offers users the choice to select the
optimal texture for optimizing the latent vector instead of op-
timizing the neural network itself [9]. This approach provides
an effective solution for optimizing deep learning models. In
our own research, we adopted a similar strategy, employing
pre-trained deep learning models and seeking positions in the
latent space that correspond to optimal outputs. Furthermore,

we employed continuous exploration of the latent space through
sliders rather than discrete user interaction methods, facilitating
a seamless and comprehensive exploration process.

III. METHODS

In this section, we will introduce the design and the imple-
mentation of our tactile vibration generation system. The whole
human-in-the-loop optimization process is shown in Fig. 1.
Users can change the vibration and obtain the closest result to the
target by changing the slider position. First, we will introduce
the framework of the optimization method, and then introduce
the design, structure and training of our generative model (as
shown in Fig. 2).

A. Human-in-The-Loop Differential Subspace Search

To enable individuals to effectively leverage their knowledge
for optimization purposes, it is important to ensure that users
possess the ability to freely manipulate the resultant oscillatory
patterns during each iteration of the optimization loop. However,
exerting precise control over a multitude of parameters within a
high-dimensional latent space is an intricate challenge.

An efficacious solution to this quandary is presented by
the DSS [11]. DSS facilitates optimization in a manner that
permits users to maintain command over the high-dimensional
latent space while concurrently exploring a relatively lower-
dimensional latent space. This approach streamlines the manip-
ulation process for human users, rendering it more manageable
and accessible.

The optimization problem can be represented as

z∗ = argmax
z∈Z

E(G(z)). (1)

Here, the generator function G assumes an input latent vector
z from the high-dimensional latent space Z, and the evaluation
function E quantifies the quality of the generated output. In
our specific context, the choice of the function E is contingent
upon the subjective perception of the user. The objective of
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the optimization is to discover the optimal latent vector z∗

that maximizes the value of the evaluation function E through
human-guided exploration within the latent space [11].

Consequently, the iterative update in the optimization process
can be expressed as

z(k+1) = z(k) + α

(
∂E(z(k))

∂z

)T

. (2)

The step size α is chosen to be greater than zero to ensure
maximization of the value of the evaluation function.

To simplify user control over the latent vector, DSS introduces
an operator denoted as pz(k)(w). This operator transforms a
low-dimensional latent vector, specifically a single number w
that represents the slider position within the 1-D space W ,
into the corresponding position z(k) within the original high-
dimensional latent space Z. This approach allows users to
manipulate only the low-dimensional subspace. Consequently,
(2) can be modified as follows:

z(k+1) = z(k) + pz(k)(w). (3)

To derive the operator pz(k)(w), the determination of the sub-
space W can be accomplished through singular value decompo-
sition (SVD) applied to the Jacobian matrix of the generator [11].

B. Generator Design

We designed our vibrotactile generator architecture based on
the framework of the super-resolution residual network (SR-
ResNet) [23], [24]. Our motivation was to effectively address
high-frequency image details. There is an input convolutional
layer, 16 residual blocks, a mid convolutional layer, a 4-times
upscale module consisting of two convolutional layers and two
pixel shuffle layer, and an output convolutional layer in the
SRResNet. We introduced a Fully Connected (FC) layer to
the input end of the network as the resize layer for dimension
transformation, to ensure that our latent vector can be received
by SRResNet. Additionally, we made an adjustment to the final
convolutional layer of the network to tailor the output to the
required size, specifically to generate the desired spectrogram.

To ensure the effectiveness of the generator, it is essential
to employ an appropriate discriminator. A discriminator that
performs exceptionally well or poor can hinder the training of
the generator. In our study, we utilized a discriminator with a
structure similar to the one presented in [23]. This discriminator
comprises eight convolutional layers, albeit with adjustments to
the channel numbers to align it with the specific requirements of
our task. The comprehensive architecture of the GAN is shown
in Fig. 3.

The generator and discriminator were trained simultaneously.
In the training process, the generator G learns how to generate
new samples closer to the real sample, while the discriminatorD
will discriminate the generated samples. The goal of the training
can be represented as follows:

min
G

max
D

Ex∼pdata(x)[log(D(x))]

+Ez∼p(z)[log(1−D(G(z))], (4)

Fig. 3. The structure of the SRResNet-based GAN.

where z represents a random noise from the distribution p(z)
(Gaussian distribution in this research), and the pdata(x) denotes
the distribution of the real data x. This competitive process
encourages the generator to generate samples that are indistin-
guishable from real data.

C. Generation With Conditional Knowledge

While GAN has outstanding generation performance, the
training process is unstable. Additionally, GAN generate sam-
ples from random noise, resulting in uncontrollable outcomes.
However, our objective is to exert control over the latent space,
enabling the model to generate spectrograms that closely resem-
ble real samples belonging to specific classes. To address these
challenges, we built our model combining the advantages of
GANs and autoencoders, and utilized conditional information.
The inspiration for our model draws from previous works, such
as Auxiliary Classifier GAN (ACGAN) [25], Autoencoding
GAN (AEGAN) [26], and Conditional Adversarial Autoencoder
(CAAE) [27] to enhance the training process and enable the
model to generate samples belonging to particular classes.

The model shown in Fig. 2 contains four parts: encoder,
generator, spectrogram discriminator, and latent discrimina-
tor. The encoder extracts the feature vector from the original
spectrogram, while the generator utilizes this feature vector to
reconstruct the spectrogram. Similar to the Adversarial Autoen-
coder (AAE) paradigm, a latent discriminator is employed to
encourage the encoder’s output to conform to a predetermined
prior distribution. This ensures that the latent space is evenly
distributed according to the specified prior distribution, allowing
the generator to effectively learn a mapping from this prior
distribution to the spectrogram distribution, as proposed in [28].
Additionally, a determined distribution will benefit the following
optimization of DSS. To make the feature containing richer
information, we utilized the spectrogram discriminator as a
classifier and applied the auxiliary classification loss, such as the
ACGAN. It will work as the discriminator and classifier when
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receiving the encoded feature, and only as the discriminator
when receiving the real gaussian noise.

To avoid data loss in compression and over-smoothing re-
construction, we used a generator together with the decoder
loss, and use a weight value to balance them. The generator
and spectrogram discriminator were structured according to the
principles of CAAE. Notably, with the label as the conditional
information, the generator can generate samples belonging to
certain classes. The discriminator can learn the relationship in
the pairs of the spectrogram and the corresponding class; thus,
help the generator to provide correct spectrograms. The training
goal can be described as follows:

min
E,G,C

max
Dz,Ds

λL(G(E(x), y), x) + γTV (G(E(x), y))

+Ez∼p(z)[log(Dz(z))]

+Ex,y∼pdata(x,y)[log(1−Dz(E(x)))]

+Ex,y∼pdata(x,y)

[∑
i

yi log(C(E(x)))

]

+Ex,y∼pdata(x,y)[log(Ds(x, y))]

+Ex,y∼pdata(x,y)[log(1−Ds(G(E(x)), y))], (5)

where Dz represents the latent discriminator, E and G repre-
sent the encoder and generator, Ds represents the spectrogram
discriminator, and C represent the auxiliary latent classifier,
respectively. x and y represent the real data and the label. TV
represents the total variation loss. λ and γ are the weights for the
decoder loss and the total variation loss, which can balance the
smoothness and high resolution [27]. In this study, the weight
setting is λ = 100 and γ = 10.

We initialized the encoder using a pre-trained ResNet-50
model that was trained on the ImageNet1K_V2 dataset, and
introduced an FC layer to resize the spectrogram to the shape
corresponding to the pre-trained model input. The generator
and spectrogram discriminator follow the network structures
illustrated in Fig. 3, maintaining consistency with those archi-
tectures. The latent discriminator contains two FC layers: 1
output layer for the discrimination and 1 output layer for the
classification. To apply the label as conditional information, we
used one-hot labels and used an FC layer to resize the label
vector to the dimension corresponding to the feature map. The
label information will be added to the feature map as a channel.

IV. EXPERIMENTS

In this section, we will demonstrate the implementation de-
tails of the system and our experiment design.

A. Data Preparation

In this study, we employed the LMT108 dataset [29], which
includes recordings of 108 distinct textures along with their
corresponding surface images. To construct our training dataset,
we utilized the sound recording files capturing the motion of a
texture explorer traversing various surfaces.

TABLE I
SELECTED CLASSES OF TRAINING SET

Seven groups (G1–G4, G6, G8, and G9) were selected from
the total of nine groups in LMT108. According to a previous
study, the original stimuli of G5 and G7 groups were found
to evoke a tactile sensation that was similar to that of other
groups [7], therefore these two groups were excluded from the
study. While more data samples could enhance the generative
model’s learning, highly complex data can also hinder model
convergence. Additionally, since we used an ACGAN-like aux-
iliary classifier to control the generation process, using the full
LMT108 dataset would require the classifier to learn a chal-
lenging 108-class classification. This type of multi-classification
problem represents a challenging task in deep learning field.
Given that it is not the primary focus of our research, we chose
to avoid scenarios involving an excessively large number of cate-
gories. Although CGAN could incorporate conditional informa-
tion without the need for an auxiliary classifier, after comparing
its generative performance (discussed further in Section V-B),
we finally chose to train the model using a subset of the dataset’s
categories. We selected two representative types of textures
from each group and built a training dataset containing fourteen
classes, to ensure the model could learn a sufficiently diverse
range of features, thus enhancing its capacity for generalized
knowledge. The selected classes are shown in Table I.

First, a 3rd-order Butterworth bandpass filter was applied to
extract frequency components ranging from 20 Hz to 1000 Hz.
Subsequently, the Short Time Fourier Transform (STFT) was
employed to construct spectrograms from the audio recordings,
with a sampling rate of 44100 Hz. The STFT frame length was
configured to 2048, accompanied by a hop length of 0.1 times
the frame length. A Hann window was chosen as the windowing
function.

To transform spectrograms back into sound waves to ensure
that the vibrator can play them, we adopted Griffin-Lim algo-
rithm [30]. The number of samples per frame was set at 2048;
the iteration time was set to 50; the hop length was set to 2048
/ 10 (floor rounding). To reduce the time cost and provide a
smooth interaction experience, we employed the algorithm on
GPU using Torchaudio [31].

To train the model effectively, we segmented the spectrogram
into fragments using a sliding window. This approach yielded
several advantages, including dimensionality reduction and an
augmentation in the training dataset’s size. The dimensions of
the sliding window were set at 48 units along the frequency
axis and 320 units along the time axis, corresponding to a
segmentation of 48 × 320 spectrograms. The choice of 48 on
the frequency axis corresponded to 1000 Hz, signifying that
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only the segment of the spectrogram within this frequency range
was retained. Concurrently, the 320 units along the time axis
approximated a duration of 1.5 seconds for each spectrogram
segment. This temporal length was deemed sufficient to capture
the full information of the underlying audio signal.

The original dataset contains approximately 5 seconds sound
recordings of different surfaces. Here, we used a sliding window
of 48 × 320 corresponding to approximately 1.5 seconds, and
moved it on transformed spectrograms, to ensure that we can
obtain segmentations from different beginning time. The moving
step length was set at five units (about 23 milliseconds), and
produced a total of 24480 spectrogram segments.

B. Model Training

The size of the latent vector z was set to 128. In our attempts,
larger latent vector cannot improve the performance, but caused
fluctuations and a longer convergence time. Network training
hyperparameters were defined as follows: a batch size of 128,
the learning rates of G and Ds were set to 0.0002, and the
E, C and Dz were set to 0.001. The learning rates of C and
Dz was decreased by a factor of 0.95 with the increasing of
the epoch number. We opted for binary cross-entropy for the
adversarial loss and cross-entropy for the auxiliary classification
loss, while for the decoder loss, Mean Square Error (MSE)
was chosen. The Adam optimizer was employed for efficient
optimization. To mitigate overfitting, we utilized soft labels
within the adversarial component. Specifically, a one-sided label
smoothing was implemented, with a soft scale parameter set to
0.3. This signifies that random values between 0.7 and 1 were
utilized instead of a fixed value of 1, and similarly, random
values between 0 and 0.3 were employed instead of 0. The entire
training regimen spanned 50 epochs. After the training process,
only the generator part was used for the optimization system.
The training process was conducted on an RTX A6000 GPU,
and took 2.5 hours.

To expedite convergence, mitigate bias, and enhance stability,
we applied min-max normalization to the training dataset, sub-
sequently rescaling the range of values to fall within the range
of [−1, 1]. This normalization process aligns the data range of
both the input and output of the generator, facilitating the training
process. Additionally, we performed the inverse transformation
to revert the network’s output range back to the original real data
range, ensuring that the generated data remain consistent with
the original data distribution.

C. Initialization

An ideal initial point will help the optimizer find the tar-
get well. DSS has attempted initialization approaches, such as
providing options or limiting the distance between initial point
and target to control the difficulty of the task and avoid bad
initialization [11].

There is a critical challenge in our optimization setup.
While the auxiliary classifier enhances class distinguishability,
it widens the gap between classes, potentially hindering the
optimizer from traversing between clusters and restricting it

to a confined space (details of the latent space distribution in
Section V-A).

To address this challenge, we used a user option-based initial-
ization method inspired by the tabu search [32], a metaheuristic
search technique that incorporates a “prohibition” rule to facil-
itate solution discovery. Our straightforward initialization rule
ensures a quick process.

A vibration of the training set is randomly chosen and trans-
formed into the latent vector z using the trained encoder, which
serves as the initial value. Users compare the initial vibra-
tion with the target vibration, selecting a similarity rank from
“Good,” “So-so,” or “Bad.” If the user chooses “So-so” or “Bad,”
another z is selected until a “Good” match is identified. The
corresponding latent vector z′ is accepted as the initial value for
the DSS optimizer.

To bring z closer to the target area, the principle of our search
strategy is: Choose near but different new z for “So-so”, and far
new z for “Bad”. The average distance of vectors corresponding
to the training set samples in the known latent space disavg was
calculated. Here, we define a parameter step = 1

8 × disavg as
the unit of the moving distance during the exploration. Inspired
by the tabu search, visited latent vectors are added to the tabu list.
In this study, a specified radius r is enforced for vectors within
the tabu list (here r is defined as the average distance step).
Consequently, vectors within this range are prohibited, allowing
for the exploration of larger regions. In this study, the length of
the tabu list is set to five, meaning that the areas surrounding the
five most recently visited latent vectors are prohibited from the
further exploration. Following the search principle mentioned,
when the user selects “So-so”, we choose a new z within the
range of (0.5 × step, 2 × step) from the current z. If the user
chooses “Bad”, we select a new z from distances beyond 2 ×
step from the current z.

This simple rule is easy to implement and allows for rapid
execution. Through this method, we can efficiently select an
initial latent vector that is closer to the target region, mitigating
the risk of not reaching the target area owing to gaps in the
distribution of classes.

D. User Interface and Presenting Device

Fig. 4 and Fig. 5 show the vibrotactile display used for
evaluating the designed vibration and the user interface of the
DSS. The device [7] consists of a vibro-transducer (Acouve
Vp210), a power amplifier (BOSE 1705II), foam, and an acrylic
cover board. The vibrator was set in the foam block to ensure
that the vibration can be transmitted effectively. An acrylic
plate was attached to the vibrator, and a layer of high-friction
electrical tape was applied to the upper surface of the plate.
This adjustment enhanced the friction, ensuring participants’
fingers maintained closer contact with the vibrating surface and
enabling them to perceive the vibrations more effectively.

During the optimization process, users can click the “Play”
button above to play the actual vibration recording serving as the
target. When users drag the slider below, vibrations generated
from the feature vector corresponding to the slider’s position
will be played. Users can freely explore the high-dimensional
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Fig. 4. The vibrotactile presenting device in this research. The vibrator was
placed in a foam block as shown in (a), and a piece of acrylic board was attached
to the top of the vibrator for users to touch, as shown in (b).

Fig. 5. The user interface of the optimization.

feature space by moving the one-dimensional slider. When users
locate the slider position that best matches the target vibration,
they can click “Next” to proceed to the next iteration. Users can
also click “Save” at any time to save the currently generated
vibration.

E. Stage I: Generation

To assess the generative performance of our TexSenseGAN,
we designed a two-stage experiment that includes a generation
experiment and an evaluation experiment. To validate whether

Fig. 6. The figure shows selected 5 target classes in the LMT108 dataset to
generate.

TexSenseGAN can generate new samples different from the
training data, we selected classes different from the training
set as generation targets. Although we followed previous re-
search and used 7 groups in the training process, our further
observation was that G1 and G9 exhibited excessively weak
vibration intensities or significant similarity to other categories
from the subjective feeling. Consequently, we also excluded G1
and G9. Finally, following the principles of stratified sampling,
we randomly selected one class from each of the remaining
groups for the task. The selected classes of the LMT108 dataset
are shown in Fig. 6.

Owing to the free movement of the collection device on
surfaces during the vibration acquisition process [29], vibration
is not uniformly distributed on the time axis. Therefore, not
all samples can effectively represent the characteristics of a
particular class. To provide subjects with more reliable target
vibrations, facilitating better execution of the generation task,
we manually selected three relatively uniform and representative
vibrations for each class. This resulted in a total of fifteen target
vibrations, and subjects were tasked with generating similar
samples to these vibrations.

In comparison to some slider-based human-in-the-loop visual
optimization tasks [10], [11], the haptic perception is not as
sensitive as vision. To help subjects better understand how to
perceive vibration characteristics and the differences between
vibrations of different categories, we conducted some training
tasks before the main experiment. In this process, we informed
subjects about the system’s operation, showed them target vi-
brations from different classes to help them understand the
distinctions, presented target vibrations from the same class to
illustrate commonalities, and allowed subjects to perform ac-
tual operations to familiarize themselves with the experimental
procedure and comprehend our optimization goals.

After subjects familiarized themselves with the system and
characteristics of vibrations, we proceeded to the generation
experiment process. Subjects were required to generate a sample
corresponding to each target vibration. The first step was the
initialization of the optimization process. In this step, subjects
needed to use the options “Bad”, “So-so”, and “Good” to select
a suitable initial value for the optimizer. During this process,
subjects were only required to make rough comparisons; thus,
they were instructed not to focus on detailed perceptions, but to
perform quick and multiple selections, with the aim of covering
an exploration range through multiple attempts. It is important
to note that the three options here do not represent the actual
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quality of the samples. For instance, “Good” does not mean
that the sample is sufficiently close to the target sample, but
rather that it possesses certain characteristics similar to the target
(e.g., similar frequency components), making it a suitable initial
point for optimization. After entering the optimization process,
subjects were encouraged to make numerous selections rather
than sticking to a single iteration’s slider position selection.

However, in this phase, subjects were asked to carefully
perceive various aspects of vibrations, such as frequency and
amplitude. We introduced several effective ways of perceiving
signal changes and adjustment strategies to help participants
better understand the generation process and complete the task
more easily. Participants are encouraged to adjust one parameter
at a time, such as frequency, before proceeding to other aspects.
This approach enhances the clarity of changes during the tuning
process. To ensure optimal results, participants should handle
the sliders carefully, as excessive adjustments may produce
distorted vibration signals. Such distortions often indicate that
the adjustments have pushed beyond the model’s acceptable
latent space, potentially leading to generation failures. There-
fore, avoiding these results is crucial. Moreover, to distinguish
between different slider positions, this optimization process
might be more time-consuming. When consecutive iterations
did not produce vibrations significantly different along the slider
direction, subjects could adopt several strategies:

1) Continue selecting similar slider positions as much as
possible.

2) Randomly choose slider positions to help the optimizer
move away from the current situation.

3) If the subject felt dissatisfied with the current vibration,
restart the optimization process from the initialized point.

Following strategy 1 or strategy 2 for several consecutive
iterations usually allowed the optimizer to move away from
the current state. During the experiment process, subjects were
asked to freely choose strategies based on their subjective judg-
ment. However, we encourage participants to primarily opt for
strategies 1 or 2 and minimize the use of the reset operation dur-
ing the optimization process. If participants feel fatigued, prefer
not to continue with the iterative adjustments of strategies 1 or
2, or if the generated samples become distorted, they may then
choose strategy 3. Since carefully perceiving subtle differences
in vibration can be mentally exhausting, and prolonged exposure
may cause finger numbness, potentially affecting sensitivity,
participants are allowed to take breaks at any point during the
experiment to maintain accuracy in their perceptions. In our
experimental observations, reset operation was rarely used; the
subject who used the reset operation the most did so only three
times throughout the entire task, and rest subjects almost never
used it.

During the selection of initial points and the optimization of
vibrations, participants were also asked to rate the subjective
similarity between the sample and the target at three different
time points: the initial random sample, the sample after initializa-
tion, and the optimized sample. Ratings were given on a scale of 0
to 10 (0 = completely different, 10 = highly similar). Unlike the
options in the initialization mentioned earlier, participants here
were required to directly assess the degree of similarity between

Fig. 7. The user interface of the Stage II. Subjects can click the upper button
to play the vibration to classify. Then subjects should select a best matching one
from the below real vibration samples.

the current sample and the target. The entire process of the
generation experiment lasted approximately 2 hours, including
rest breaks. Each subject generated 15 samples corresponding
to the target vibrations. From initialization to completion, the
generation of each sample took 2-8 minutes.

To cover multiple generated results in the subsequent pairing
task of the evaluation experiment without overwhelming the
subjects, we limited the number of generated samples. In the
first stage, we invited three subjects (three males, aged 21-26),
who generated 45 samples (nine for each class). These three
subjects will not be involved in the evaluation phase to eliminate
the impact of memory.

F. Stage II: Evaluation

We designed a classification task to validate the similarity
between the vibrations generated and the real vibrations of the
surface. The user interface for this part is shown in Fig. 7. The
classification task comprised three parts:

1) Select the correct class for the real vibration (the control
group): In this part, all 15 real vibrations were presented
in a shuffled order to the subject. For each trial, 1 real vi-
bration was selected for classification, and subjects could
click a button to play this vibration. Furthermore, 5 real
vibrations from each class were presented. These were
randomly selected from each class, excluding the vibration
to be classified shown above. The indices (1, 2, 3, 4, 5) cor-
responding to the vibration classes (G2, G3, G4, G6, G8).
Subjects could play these vibrations and were required
to choose the class that most closely resembled the one
being classified. This process was repeated three times,
resulting in a total of 45 classifications. This part aimed
to validate the study’s premise that people can perceive
differences between vibration stimuli, understand their
characteristics, and accurately classify them. The results
from this control group were used to assess the accuracy of
the generated vibrations. Subjects were asked to describe
the features of the five types of vibrations and perform
subsequent tasks based on these descriptions.

2) Select the correct class for the generated vibration. The
procedure for this part was similar to the first, but focused
on classifying generated vibrations. The forty-five gener-
ated vibrations were shuffled and presented to the subjects
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Fig. 8. The distribution visualization of the latent space.

for classification. The vibrations below were randomly se-
lected from the real vibrations of each class. Subjects were
required to select the class that most closely resembled the
vibration generated from these five options. This process
was only conducted once to maintain an equal task number
with the control group. We asked subjects to describe the
vibration features and compare with the control group.

3) Select the corresponding target vibration for the vibra-
tion generated. The third part aimed to validate whether
subjects can identify differences between samples in the
same class. The forty-five shuffled generated vibrations
were shown to the subjects, same as in the second part
above. However, instead of five options, subjects were
presented with three options, all belonging to the same
class as the displayed generated vibration. This is because,
for each class, there were three real vibrations serving as
targets. Therefore, subjects needed to select the correct
target vibration from below three options corresponding
to the given generated vibration. The total number of
classification tasks in this part was also 45, determined
by the number of vibrations generated.

Twenty subjects (eleven males, nine females, aged 22-27)
took part in this stage. The entire process of the evaluation
experiment lasted about 1.5 hours, including the tutorial and
rest breaks.

Approval of all ethical and experimental procedures and pro-
tocols was granted by the Ethics Committee of The University
of Tokyo.

V. RESULTS

In this section, we will first present the performance of the
trained neural network model, and then present the results of the
two-stage user experiments.

A. Encoded Latent Space

The latent space is shown in Fig. 8 after the 50-epoch training
process. With the benefit of the auxiliary classification, the latent
space can be distinguished according to the class.

B. Problems in Other Alternatives

In addition to the network model used in TexSenseGAN, we
implemented various generators or decoders for comparison,
including basic GAN, autoencoder; Variational Autoencoder
(VAE) to learn the distribution; AAE to align the distribution,
CGAN, and ACGAN to incorporate conditional information.
However, these models faced challenges operating within our
optimization framework, making direct comparisons unfeasible
here.

Initially, we experimented with models based on the autoen-
coder architecture, including autoencoders, VAEs, and AAEs.
While these models were relatively easy to train, they suffered
from severe over-smoothing issues. Considering our need for
feature vectors suitable for optimization, we targeted a relatively
small feature space dimension, such as the 128 dimensions used
in this study. However, this dimensionality proved inadequate for
the original data, resulting in significant information loss when
encoded into this latent space. Consequently, the generated spec-
trograms lacked detailed information, leading to noticeable dif-
ferences between the reconstructed vibrations and the originals.

Moreover, we incorporated GANs into our framework.
Although GANs could generate spectrograms with more detail
compared to autoencoders, they were prone to mode collapse,
producing similar results for different inputs. Thus, GANs
were unsuitable for our optimization approach based on input
vectors. Additionally, GANs generate results from random
noise, resulting in a mixed latent space. Consequently, the
generated vibrations underwent significant changes when users
moved the slider continuously. Contrary to the original DSS
research, which focused on visual stimuli, our work emphasized
on tactile tasks, which were less sensitive than visual stimuli.
Consequently, these abrupt changes made it difficult for users
to touch and compare vibrations, complicating the task of
selecting an appropriate slider position.

We compared generative models, CGAN and ACGAN, with
conditional information support. Within our task, CGAN only
requires conditional information as input, thus avoiding the
challenges of multi-class auxiliary classification in ACGAN,
allowing it to handle more complex datasets. However, our
tests demonstrated that this approach of using conditional
information alongside latent vectors as input to control
generation, was less effective than ACGAN’s direct use of an
auxiliary classifier to shape the latent space distribution. Under
our training framework, CGAN tended to produce extremely
sparse output results or exhibited a tendency not to converge.
ACGAN performed relatively better among the control group
models we experimented with; however, it faced challenges
when applied in the optimization process, such as DSS. ACGAN
can differentiate features between different classes and control
them, but the uneven input vector format of label + latent vector
is not conducive to the optimization process of DSS. Despite
these challenges with ACGAN, we incorporated a similar
auxiliary classification approach in TexSenseGAN, leveraging
its strong capability for latent space control.

These problems make it difficult to identify models with
similar performance for comparison with our TexSenseGAN.
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Fig. 9. The figure shows the subjective similarity of each vibration class in different optimization stages.

Fig. 10. The figures show one target spectrogram for each class, along with the corresponding spectrograms generated by three users. The leftmost column
represents the real target vibrations used as references, while the three columns on the right each represent one of the vibrations generated by individual users. Each
row corresponds to a different vibration class.

Therefore, we excluded the performance results or user studies
of the control group.

C. Subjective Similarity and Generation Results

Fig. 9 illustrates changes in subjective similarity to the target
sample across three stages of the generation process: “Random”
represents the initial random latent vector, “Initialized” denotes
samples that have been initialized with certain target characteris-
tics, and “Optimized” indicates the final optimized result. Light
thin lines show changes in each individual trial (9 trials per class,
with 3 participants generating samples for 3 target samples). The
dark thick line represents the average subjective similarity for
each class, with error bands indicated. Overall, the optimization
process demonstrates effectiveness, supported by the benefits of
the initial value selection method. Nevertheless, certain cases
reveal instances of ineffective or even inverse optimization,
with variations in effectiveness across different classes. Also,
some generated spectrogram samples of Stage I are shown in
Fig. 10, and the corresponding waveforms transformed from
the spectrograms are shown in Fig. 11, to show the generation
performance.

In the figure, the leftmost column shows five categories of
target vibrations, while the three columns on the right show the

vibrations generated by three users for these targets. We selected
one vibration from each category for demonstration. The spec-
trograms reveal that our TexSenseGAN successfully produces
vibration patterns similar to the target for certain categories.
While some results are less ideal, the tendency to generate more
uniform vibration patterns shows the consistency of the system.
This consistency is a strength, although it can make replicating
vibrations with significant temporal fluctuations, such as Grass
Fiber, more challenging. Moreover, the GAN structure signifi-
cantly aids in generation; however, some detail loss owing to the
autoencoder-like structure results in smoother outputs compared
to real vibrations. Nonetheless, the system effectively replicates
the general vibration characteristics to a certain extent, even if the
intensity is slightly reduced compared to the original samples,
such as Rough Paper.

However, spectrograms alone cannot fully capture the subjec-
tive experiences of the subjects. Therefore, we mainly focused
on analyzing the results of Stage II, the classification task.

D. Inter-Class Classification

From Fig. 12, we can observe an overview of the result of the
inter-class classification task. In the five-category task, subjects
achieved an accuracy of 55.9% when judging the generated
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Fig. 11. The figures show the waveforms of the vibrations corresponding to the spectrograms in Fig. 10.

Fig. 12. The average accuracy was calculated in each class.

vibrations (experimental group, experiment 2), compared to
approximately 72.8% for the real vibrations (control group, ex-
periment 1). The control group results indicate that subjects can
distinguish between different surface vibration stimuli. Fig. 12
shows that subjects in the generation group and the control
group exhibited similar accuracy trends for these 5 types of
different vibrations. This preliminary evidence suggests that
our TexSenseGAN can generate distinct vibration patterns that
subjects can differentiate.

Fig. 13(a) shows the confusion matrix of the classification task
of generated vibrations and Fig. 13(b) shows the control group,
the classification of real vibrations. The confusion matrices
provide a clearer view of how subjects distinguished between
each type of vibration. We can observe that both 2 confusion
matrices show a diagonal trend.

The best generation was achieved with G3 vibrations, with
a classification accuracy of 97% in the experimental group.
The spectrogram shows that G3 has a higher proportion of
high-frequency components compared to other categories. Sub-
jects generally described G3 as a uniform and subtle high-
frequency vibration. This distinct vibration pattern made it
easier for subjects in Stage I to optimize the generated vibra-
tions and for subjects in Stage II to distinguish this type of
vibration.

Observing the confusion matrices, we find that their trends
are similar but there are some differences in accuracy appearing
in categories G4 (26%), G6 (23%), and G8 (32%). In the ex-
perimental group, subjects classified the generated G4 samples
with an accuracy of 53%, G6 samples with an accuracy of
46% and G8 samples with an accuracy of 37%, while in the
control group, the accuracy for G4, G6, and G8 was 79%, 69%,
and 69%, respectively. This is because more G4, G6, and G8
samples were classified as G2. According to subject feedback,
the characteristics of G2 vibrations are less distinct compared
to other categories. Subjects often described G2 as a uniform
and smooth mid-low frequency vibration or found it difficult to
describe any prominent patterns. It can be observed that even
in the control group, distinguishing the real G2 vibrations was
challenging, with an accuracy of 47%, same as the generated
group.
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Fig. 13. (a) The confusion matrix of the classification task of generated vibrations, (b) The confusion matrix of the classification task of real vibrations, (c) The
average cosine similarity matrix between generated samples and target samples.

E. Subjective Classification and Mathematical Similarity

To assess the effectiveness of subjective judgment as the
primary guide for adjustment, we computed the objective simi-
larity between generated and target samples as a supplementary
measure. Since our primary concern is whether the frequency
components of the samples are similar, and given that the
generated and target samples are not entirely identical (e.g.,
differences in starting time and phase), we applied a Fourier
transform to all samples and extracted only their magnitude spec-
tra. For each generated sample, we computed cosine similarity
with the magnitude spectra of all target samples. The resulting
pairwise similarities were averaged to form the matrix shown in
Fig. 13(c).

Comparing Fig. 13(c) with Fig. 13(a) and Fig. 13(b), the
generated samples perform noticeably worse on objective met-
rics than on subjective classification results. However, we also
observe that for some easily confused categories, the objective
metrics exhibit trends similar to those seen in subjective classifi-
cation, indicating partial agreement between mathematical and
perceptual measures. In other words, the trend of similarity pro-
vides a common ground between subjective and mathematical
indicators, reinforcing each other. This phenomenon suggests
that within the framework of this study, subjective perception is
more sensitive than mathematical metrics, allowing us to obtain
more meaningful and precise results.

F. Regression Analysis

We can draw some conclusions based on each subject’s per-
formance in both the generated and control group, as shown
in Fig. 14. We calculated the average accuracy of each sub-
ject for each class, obtained 100 sets of accuracy. The figure
roughly shows an interesting trend: subjects who were good at
distinguishing real vibrations in the control group also tended to
have higher classification accuracy in the generated group. To
further illustrate this phenomenon, we constructed a multivariate
regression model following the process below to verify the
relationship between the accuracy in the control group and the
accuracy in the generated group.

TABLE II
COEFFICIENTS AND p-VALUES OF EACH FACTOR IN THE MODEL

We constructed a linear regression model with interaction
terms, using control group accuracy, subject ID, and vibration
class as independent variables, and the generated group accuracy
as the response. Before the fit process, we removed outliers
that exceeded two scaled median absolute deviations from the
median, obtained 93 sets of accuracy. The regressed model can
be expressed as:

accG = 0.0349 ∗ c− 0.0017 ∗ i+ 0.9490 ∗ accR
+ 0.0011 ∗ c ∗ i− 0.1983 ∗ c ∗ accR − 0.0062 ∗ i ∗ accR.

(6)

In this equation, accG represents the generated group accu-
racy, c represents the class ID, i represents the subject ID, and
accR represents the control group accuracy. The p-values of
each term are shown in Table II. The analysis reveals that the
accuracy of the control group, accR, has the most significant
impact, along with the interaction term between class c and
accR, both of which are statistically significant. This suggests a
meaningful relationship between accG and accR, indicating that
our model successfully reconstructs recognizable features of real
target samples. The significance of the interaction term c ∗ accR
implies that the model’s generation capability varies across
different classes. Additionally, terms involving the subject ID
i are insignificant, suggesting that the observed patterns are
consistent across subjects.
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Fig. 14. The average accuracy of each subject.

We performed a stepwise regression to select some variables.
We can obtain a model like:

accG = 0.10245 ∗ c+ 1.0914 ∗ accR − 0.2657 ∗ c ∗ accR.
(7)

This model maintains class c (p = 0.0699), control group
accuracy accR (p = 1.1785× 10−8), and their interaction term
c ∗ accR (p = 0.0012). The accR is the most dominant term.
The model shows the difference in generation ability between
classes, even larger than the previous model. This is reasonable
according to our experiment results. The model R2 = 0.423,
reveals that there is a correlation; F = 21.7 with p = 1.19×
10−10, indicating that the model is credited.

G. In-Class Classification

Furthermore, we can obtain some information from the clas-
sification in a class. The overall 3-class classification accuracy
is 42.2%. This in-class accuracy of each class is shown in
Fig. 15. The accuracy of each class is 45.6% (G2), 46.1%
(G3), 41.1% (G4), 36.1% (G6) and 42.2% (G8). Although the
accuracy for each class is higher than the random classification
for three classes (33.3%), indicating that there are indeed some
differences between samples generated with different targets, the
classification accuracy is not sufficiently high to prove that users
can distinguish between samples belonging to the same class.
This can be caused by the performance limitation of the model on
the reconstruction of detailed information or the limited haptic
resolution. However, in another aspect, this result suggests that
the model captures and replicates some essential and general
characteristics that define each class. Despite challenges in

Fig. 15. The in-class accuracy of each class. The accuracy of each class is just
over 33%, which means that although there are differences between the samples,
they are difficult to distinguish.

distinguishing within a class, participants could distinguish be-
tween different classes. Therefore, the system reliably encodes
and reproduces the defining features of each type of vibration.

VI. DISCUSSION

From the results, we observed several key phenomena that
merit further discussion and analysis.
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First, we can further discuss based on subjects’ feedback and
the patterns of these types of vibrations. The main frequency
component of G4 vibrations is similar to G3 while the amplitude
is stronger, similar to G2. Although the accuracy of real G4
achieves a high level, various subjects said G4 is difficult to
distinguish comparing to G2. Just some subjects paying attention
to frequencies can point out that G4 is “smooth”, such as G3 but
less than G3. This observation helps explain why G2 and G4 are
challenging to differentiate in the generated group.

This also suggests that subjects tend to use the intensity of the
vibrations as their primary or initial criterion for the judgment.
G6 vibrations are typically composed of low-frequency com-
ponents with uneven, strong, sudden pulses. G8 vibrations are
composed of some different frequency components, also strong
but not uneven as G6. Subjects who can pay attention to the
frequency component can easily point out the differences but
many subjects just judge from the intensity and say they are
similar. This phenomenon appears in both groups. Observing
the waveforms generated by users in Fig. 11 we notice that the
model tends to produce uniform vibration patterns, making the
generated vibrations similar to both G2 and G8. This similarity
causes confusion during classification as well.

Additionally, although the model incorporates GAN to mit-
igate detail loss owing to feature space compression, some
distortion is inevitable. Consequently, the generated vibrations
can exhibit an “oversmoothing” effect similar to that observed
in autoencoders, making them less “sharp” compared to the
real vibrations. This can reduce the uneven pulses present in
the vibrations. Similarly, the intensity of the originally strong
and rough surface, G8, is weakened. Thus, it is more similar
to the more uniform and weaker G2. This aligns with subject
feedback and the observation mentioned earlier that subjects
tend to prioritize amplitude when making initial judgments.

Our demonstrated model can generate tactile vibrations that
are distinguishable and aligned with target characteristics ac-
cording to the user’s preference. However, there is a gap between
the classification task accuracy of real samples and generated
samples. Although there are some differences between the vibra-
tion feedback and textures, vibrations can activate some related
receptors and provide some similar perceptions [8]. Therefore,
some related conclusions about texture perceptions may explain
phenomenons in this research. A previous study points out
that, eliminating movement constricted the subjective range of
texture roughness or other surface features [33]. Because the
haptic vibrations presented in this study are time-related rather
than space-related, the participants did not experience spatial
movement during their perception process. However, vibrational
and spatial stimulation considered two components of texture
perception [34]. The accuracy of classification task may be
influenced by this type of stimulation absence, especially in ex-
periment 3 of Stage II, which focuses on the detailed differences
in the same class.

Additionally, the phenomenon in which users can distinguish
between different classes but struggle to differentiate samples
within the same class might be owing to the model capturing
more general information while having difficulty in capturing
more specific information. This may be another type of mode

collapse. The mode collapse can occur in one of two forms: the
intra-class mode collapse and the inter-class mode collapse [35].
Although we have incorporated conditional information to en-
able the model to generate samples across multiple categories
and to control the generation process, thereby avoiding inter-
category mode collapse, intra-category mode collapse can occur.
This can lead to the condition occurring in Stage I, where
subjects, while exploring similar feature spaces, encounter the
model’s tendency to produce similar results for a specific class or
neighboring features. Consequently, this results in the model’s
inability to capture specific details accurately, leading to a lower
distinction accuracy among subjects in experiment 3, Stage II.

Therefore, in future work, we plan to explore other generative
models to enhance the diversity and precision of the gener-
ated vibrations. For example, incorporating diffusion models
can help improve the variety and fidelity of the output [36].
Diffusion models can be easy to train compared with GAN
and can provide high quality results. Additionally, the current
optimization process is time consuming and requires subjects to
focus intensely on detecting subtle differences while adjusting
the slider position. Streamlining the interface for more intuitive
operation can significantly improve user experience. Our current
presentation system is designed specifically to deliver texture-
related vibratory feedback on simple devices, such as game
controllers, rather than to replicate the sensation of real tex-
tures themselves. Therefore, in future research, we may further
explore the application of this framework to spatial and temporal
stimuli and aim to deploy it on equipment better suited to the
original data. For instance, we envision using devices like the
PHANToM, to fit the data collection method better and consider
spatial stimuli to create more realistic tactile feedback.

VII. CONCLUSION

Our study demonstrates the feasibility and effectiveness of a
human-in-the-loop vibration generation system, TexSenseGAN,
to create realistic and distinguishable haptic textures. In our
TexSenseGAN model, we incorporated the idea of SRGAN
and CAAE to generate class-controllable haptic vibrations with
conditional information and encoded features. By employing
DSS and the pre-trained generative model, we enable users to
intuitively control high-dimensional latent space and generate
vibration samples using simple, one-dimensional sliders. The
user experiments conducted with this system indicate that it
can produce vibration patterns that are recognizable and distin-
guishable by subjects, though challenges remain in capturing
finer, specific characteristics within specific classes. Our ap-
proach offers a novel method for generating haptic vibrations
based on user preferences, providing a foundation for future
advancements in the field of haptic technology and virtual reality
interactions.
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