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Abstract—This paper presents MPTC-Net, an autoencoder-
based perceptual codec for multimodal tactile signals, capable
of jointly compressing data across multiple tactile dimensions.
Previous studies, including the state-of-the-art vibrotactile codecs
standardized in IEEE 1918.1.1 and MPEG-I Haptics Coding,
have primarily focused on roughness-related information, rather
than jointly encoding multiple tactile dimensions. To address
this limitation, we developed a Multimodal Psychohaptic Model
(MPM) that incorporates the impact of multimodal stimulation
on perceptual thresholds. The MPM is integrated into the loss
function during training to enhance perceptual performance.
Furthermore, an attention module is employed to extract critical
information across modalities, and both early fusion and late fu-
sion strategies are explored for improved multimodal integration.
Our experimental results show significant improvements with the
proposed codec, particularly in vibrotactile perceptual metrics,
demonstrating its effectiveness in managing the complexity of
multimodal tactile feedback.

Index Terms—Tactile codec, Perceptual coding, Multimodal
fusion, Tactile Internet.

I. INTRODUCTION

The Tactile Internet aims to provide realistic touch experi-
ences and immersive multi-sensory remote exploration of real
or virtual environments [1]. Transmitting multimodal haptic
data is crucial, as objects exhibit diverse physical properties,
and the human sensory system processes multiple haptic stim-
uli concurrently to perceive and interact with the environment
accurately [2]. For example, vibrotactile feedback enables the
perception of fine textures, contact force feedback supports
the recognition of shape and hardness, and frictional forces
convey the degree of surface roughness. These capabilities
are crucial for applications like teleoperation, VR, and E-
commerce, ensuring immersive and realistic interactions.
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Recent multimodal research has investigated the interactions
and integration of different sensory modalities. Some studies
have explored cross-modal correlations between vision and
touch [3], [4], while others have focused on multimodal
fusion [5], [6]. Our work focuses on efficient compression
and transmission of multiple tactile stimuli.

Tactile stimuli are associated with surface properties, com-
prising five key dimensions of tactile perception: macro
and fine roughness, warmness/coldness, hardness/softness, and
friction [7]. Various sensing and display technologies for
multi-modal feedback have been explored, such as Texplorer2
[8], Proton Pack [9], a tool-mediated recording device [10] and
multimodal haptic gloves [11]. However, the large amount of
multimodal tactile data generated by these devices presents
real-time transmission challenges. For example, vibrotactile
signals for 36 points require a transmission rate of 1.6 Mbit/s
[12], and adding other tactile modalities further increases
the bitrate. Therefore, achieving efficient transmission while
preserving perceptual transparency depends on effective com-
pression of multimodal tactile signals. Multimodal codecs
exploit the relationships between different modalities and
human perception, making them a key research focus.

Among the various forms of tactile data, vibrotactile in-
formation has attracted the most attention, with standards
already established by both IEEE [13] and MPEG [14]. Several
vibrotactile codecs have been developed, which can be broadly
categorized into two types: transform-based codecs and deep
learning-based (DL) codecs.

Transform-based codecs compress vibrotactile signals by
converting them into the frequency domain and applying
frequency-dependent, perceptually optimized quantization to
preserve relevant details. Two state-of-the-art transform-based
approaches are PVC-SLP [15] and VC-PWQ [16]. PVC-SLP
uses sparse linear prediction for perceptual coding, while VC-
PWQ adopts a discrete wavelet transform and psychohaptic
model for quantization. An extended version of VC-PWQ
supports multiple interaction points [17].

Deep learning-based codecs are gaining attention for their
ability to automatically extract meaningful features and
support end-to-end optimization of the entire compression
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pipeline. These advantages can help achieve higher compres-
sion ratios while maintaining reconstruction quality. Li et al.
[18] proposed a CNN-based codec optimizing the rate distor-
tion function. In [19], the recurrent network-based vibrotactile
codec (RNVC) shows the benefits of low latency. Nockenberg
et al. developed a perceptually trained ResNet-based autoen-
coder [20] and its rate-scalable version [21], which we refer
to as DeepVib. The above methods are effective, but they
only focus on the vibrotactile data and neglect other tactile
modalities. One recent approach to multimodal compression
employed a stacked autoencoder (SAE) combined with a gated
recurrent unit (GRU) to encode normal and lateral forces [22].
However, the absence of a perceptual model may compromise
perceptual quality, as such a model is crucial for prioritizing
information most relevant to human perception.

In summary, most existing tactile codecs focus only on
vibrotactile signals, lacking multimodal integration and per-
ceptual consideration. To our knowledge, our work is the
first to propose a perceptually trained multimodal codec for
vibrotactile, normal, and tangential forces—crucial elements
to capturing surface properties like roughness, hardness, and
friction. Although force signals are typically considered ki-
naesthetic, they also convey rich tactile cues from the surface.
Developing such a codec poses challenges in signal integra-
tion, efficient feature extraction, and perceptual modelling. To
address these challenges, we explore early and late fusion
strategies to enhance signal integration, implement attention
mechanisms to improve feature extraction, and propose a
multimodal psychohaptic model to optimize the perceptual
quality of multimodal interaction. The main contributions of
this paper are:

• Development of an enhanced attention-based ResNet
multimodal codec to efficiently compress multimodal
tactile data.

• Proposal of a multimodal psychohaptic model that ac-
counts for cross-modal influences in the codec design.

• Comprehensive evaluation of different fusion configu-
rations and training loss functions, validated through
metrics-based performance assessment.

II. BACKGROUND: DL-BASED VIBROTACTLE CODEC

The deep learning codecs comprise four main components:
encoder block, quantization, entropy coding and decoder
block. As illustrated in Fig. 1: (i) The encoder block takes
a vibrotactile signal x as input and outputs a latent represen-
tation y; (ii) The quantization module reduces the bits needed
to describe the latent representation y, but introducing errors to
the compressed output space ŷ ; (iii) The entropy coding uses
statistical models to further compress the data and generate a
bitstream; (iv) Lastly, the decoder block reconstructs the time-
domain signal x̂, from the compressed ŷ.

Our multimodal codec builds upon the ResNet-based vibro-
tactile codec structure introduced in [20]. As shown in Fig. 2,
the encoder and decoder each consist of a series of residual
blocks. The encoder and decoder have a flexible design to

Fig. 1: DL-based tactile codec structure. Adapted from [20].

adjust the depth of the neural network and compression ratio.
The size of the latent variables depends on the sampling factor
N and the number of features F , and it can be calculated as

ysize = F × bl

2N
(1)

where bl represents the block length. Uniform quantization
is applied after the encoder. Gaussian distribution is used to
derive the entropy model. Context Adaptive Binary Arithmetic
Coding (CABAC) is employed for entropy coding. This codec
provides a flexible structure that allows adjustments to the
model depth and compression ratio, making it adaptable to
different use cases. However, it is limited to only supporting
vibrotactile signals and relies on simple convolution blocks
without advanced mechanisms such as attention. These lim-
itations mark possibilities for improvement in our proposed
multimodal codec.

(a) Encoder Block (b) Decoder Block

Fig. 2: Encoder and decoder blocks. The parameters are spec-
ified as ”kernel size, input features → output features”. Two
additional residual blocks further extract high-level features
after downsampling. Adapted from [20].

III. THE MULTIMODAL CODEC

We propose key innovations to achieve a multimodal tac-
tile codec and improve its performance: (1) an attention
mechanism to capture complex data interdependencies, (2)
exploration of early and late fusion techniques for modality
integration, and (3) a multimodal psychohaptic model to
develop a perceptual loss function.

A. Attention Module

Fig. 3 shows the structure of the downsampling, upsampling
and residual block. The difference is whether they include
convolutional layers for upsampling or downsampling. Each
downsampling block applies downsampling by a factor of 2,
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(a) Downsampling Block (b) Upsampling Block

(c) Residual Block

Fig. 3: Residual Block Structures

Fig. 4: ECA Module

while the upsampling block does the opposite. The residual
blocks increase the network depth and further extract high-
level features. We incorporate an Efficient Channel Attention
(ECA) module [23] into the residual block by placing it before
the residual connections, as shown in Fig. 3 and Fig. 4.
By applying attention weights across different channels, the
ECA module helps the network to focus on more informative
features and ignore less relevant information. Moreover, the
applied ECA is lightweight, enabling seamless integration into
residual blocks with minimal impact on processing speed.

B. Multimodal fusion

Multimodal fusion is a key challenge in designing efficient
codec architectures, affecting reconstruction quality and com-
pression efficiency. Depending on the fusion position within
the neural network, the corresponding methods can be divided
into early and late fusion. Early fusion merges data at the
beginning of processing, allowing cross-correlations to be
exploited and simplifying the model architecture. Late fusion
processes each modality independently before combining the
outputs. This approach offers advantages in scenarios where
the quality of data varies across modalities or when significant
differences exist between them. The purpose of comparing
these two strategies is to determine which approach achieves
more effective integration of features from different modalities,
thereby enhancing overall compression performance.

Fig. 5 illustrates the two fusion strategies. The early fusion
method (Fig. 5a) concatenates the three types of signals along
the feature dimension and then feeds them into a shared
encoder network. After quantization and entropy encoding,
latent variables are processed together by a decoder block.
Finally, the compressed signals are decoupled along the feature

(a) Early Fusion

(b) Late Fusion

Fig. 5: Two multimodal fusion strategies. Vib, F n, and F t
correspond to vibrotactile, normal force, and tangential force.
The letters ’f’ and ’d’ represent fusion and defusion.

dimension to reconstruct the three signals. On the other hand,
the late fusion (Fig. 5b) encodes the three signals indepen-
dently through separate encoder blocks, and their respective
results are concatenated before the quantization. Similarly,
the multimodal tactile information is decoupled and passed
through individual decoder blocks for reconstruction.

Before feeding the force signals into the network, prepro-
cessing is applied to capture dynamic features. Specifically, the
mean value (DC component) is subtracted from each signal.
The DC component is excluded from training and transmitted
separately via header encoding, ensuring the model focuses
on dynamic features while effectively integrating them with
vibration signals.

C. Multimodal Psychohaptic Model
The psychohaptic model describes how physical stimuli,

such as force and vibration, are sensed and interpreted by the
human. Noll et al. [16] introduced a vibrotactile psychohaptic
model to adapt the quantizer, ensuring that distortions are in-
troduced mainly in frequency ranges that are least perceptible.
They analyzed the magnitude range of 280 vibrotactile signals
collected from [24], identified the key threshold levels at
specific frequencies to derive the absolute threshold function.
The vibrotactile signals were obtained under a normal force
of 1N. As illustrated in Fig. 6, the red curve represents the
absolute threshold function:

t(f) =

∣∣∣∣∣ 62dB(
log10

(
6
11

))2 ·
[
log10

(
f

550Hz
+

6

11

)]2∣∣∣∣∣− 77dB

(2)
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where t(f) represents the absolute threshold as a function of
the frequency f . Eq. (2) illustrates the relationship between
frequency and the vibrotactile absolute threshold. However,
the influence of other modalities is not considered. Since
material texture perception involves contact and pressing, we
need to extend the threshold function by incorporating the
impact of normal force. As a preliminary exploration, our
study specifically focuses on the effects of normal force, while
the influence of tangential force on other modalities remains
an open question.

Fig. 6: Absolute threshold affected by normal force. The
previous absolute threshold curve with a 1N normal force is
from [16](red), while the other three curves represent absolute
thresholds under different normal forces: 0.5 N (blue), 3 N
(yellow), and 6.5 N (purple).

The stimuli in one modality influences the perceptual
threshold of another modality. This is recognized as the
”cross-modality threshold artifacts” [25], [26]. For example, a
stronger normal force leads to a significant decreased vibration
threshold in the normal direction, but the threshold of tangen-
tial vibration is independent from the normal force [26]. Oh
et al. found that the impact of force on perception thresholds
is more noticeable at a frequency of 250 Hz [25]. Meanwhile,
the result from [25] shows that at a vibration frequency of
250 Hz, the effect of force on the perception thresholds can
reach up to 10 dB at a vibration frequency of 250 Hz, while
it is typically within 5 dB at 40 Hz. Using this information
as regression points, we improved the function by adding a
variable F to represent the effect of normal force.

t(f, F ) =

∣∣∣∣∣ 62dB(
log10

(
6
11

))2 ·
[
log10

(
f

550Hz
+

6

11

)]2∣∣∣∣∣
− 15 · log10(F )

1 +
∣∣∣log10 ( f

255 + 1
51

)∣∣∣ − 77dB
(3)

In Eq. (3), F represents the normal force. The added part of
the function reflects the influence of normal force on the vibro-

tactile threshold. Fig. 6 illustrates the new absolute threshold
function for vibrotactile signals considering the cross-modality
artifacts. The red curve is considered as the baseline as
presented in [16] with a 1N-normal force. The remaining three
curves correspond to different levels of normal force (0.5N,
3N and 6.5N). The curves indicate that pressing force has a
stronger influence on the threshold in the mid-frequency range,
i.e., 100-500 Hz. This ensures that our model aligns with the
findings reported in [25]. In the next subsection, we use this
psychophysical model to design the loss function, enabling
adaptability to complex multimodal interactions, which the
original model in [16] could not achieve.

D. Loss Function

The loss function for deep learning-based codecs consists of
two major components: entropy loss and distortion loss. The
entropy loss encourages the model to produce more compact
representations. Distortion loss focuses on the accuracy of
the reconstructed data and is typically calculated by MSE.
Perceptual loss is also considered a distortion loss, focusing on
the perceptual quality of the reconstructed data. In this section,
we introduce the psychohaptic model and the perceptual loss
function derived from it.

Mask-to-Noise Ratio (MNR) is a concept introduced in
the Psychohaptic Model (PM) introduced in [16] and can
be used to measure how much reconstruction noise can be
perceived. PM includes both the absolute perceptual threshold
and masking effects. In [16], the two components are added
by power additive combination to obtain the global mask.
According to the results of [20], when the compression ratio
is not very high, the masking effect has little impact on the
signal quality. This means neglecting masking under such
conditions does not lead to significant degradation. Hence, in
this work, we simplified the method by using Eq. (3) from the
previous section as the global threshold. Specifically, for each
vibrotactile sample, the normal force F in Eq. (3) is calculated
based on the average of the samples over the same period. The
vibrotactile signal is divided into multiple wavelet bands in the
frequency domain. For each band, MNR can be calculated as
follows:

MNR(b) = 10 log10
Eg(b)

En(b)
(4)

where b represents the band index. Eg(b) and En(b) denote
the global mask and the noise energy across the band b. The
vibrotactile perceptual loss LMNR for vibrotactile signals is
based on [20], and obtained from:

LMNR = − 1

20

B∑
b=1

MNR(b)− 22 (5)

where B is the total number of bands. Please note, that
compared to [16], the MNR used in this paper uses the t(f, F )
from Eq. (3) and not the t(f) shown in Eq. (2).

The Perceptual Mean Squared Error metric (P-MSE) [27]
is used as the distortion loss for normal force and tangential
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force. PMSE uses Weber-Fechner law to describe the relation-
ship between psychophysical sensation and physical stimulus.
It is defined as

LPMSE =
1

N

N−1∑
i=0

[
S(i)− Ŝ(i)

]2
=

c2

N

N−1∑
i=0

[
log

xi

x̂i

]2 (6)

S and Ŝ represent the original and distorted psychophysical
sensations, while x and x̂ denote the corresponding force
values in time domain. The constant c is a scaling factor
determined experimentally.

Based on the above calculations, we have the perceptual
loss function for vibrotactile and force signals. Specifically,
LMNR represents the perceptual distortion in vibrotactile
signals while LPMSE serves as a specialized loss function for
force signals. To evaluate the effectiveness of the proposed loss
function used in the multimodal codec, we compared the two
loss functions: Signal Loss (LS) and Perceptual Loss (LP ).
Signal loss uses MSE as distortion loss for all modalities.
Perceptual loss aims to balance pixel-level accuracy with
perceptual quality.

LS = λ1MSEvib + λ2MSEFn
+ λ2MSEFt

+ λ3R (7)

LP = λ1MSEvib + (1− λ1)LMNR + λ2LPMSE Fn

+ λ2LPMSE Ft
+ λ3R

(8)

λ1, λ2 and λ3 are the coefficients to balance between the
terms.

IV. EXPERIMENTS

A. Dataset and Parameters

We used the dataset by Culbertson et al. [10], which
includes time-aligned vibration, normal force, and tangential
force signals for 100 haptic textures, each recorded for 10
seconds at 10 kHz using a custom handheld device. To match
the IEEE 1918.1.1 standard [13], signals were downsampled to
2800 Hz and split into ten 1-second segments, with 8 segments
used for training and 2 for validation.

We used the Adam optimizer with an exponential scheduler
and set the number of downsampling blocks N to 3. For
early fusion, the number of the features F is set to 6, to
balance compression ratio and signal quality. For late fusion,
the feature numbers for vibration and force are 4 and 1,
respectively. Since the vibrotactile signal is more complex,
we assign 4 features. This configuration ensures that the
overall complexity and compression ratio range are aligned
to compare. In Eq. (7), λ1 and λ2 are both set to 1. In Eq. (8),
the values of λ1 and λ2 are set to 0.9 and 1, respectively, to
balance the influence of MSE and perceptual component. λ3

is set to 5× 10−8 because the entropy loss has a much larger
scale than the distortion loss. The network parameters were
initialized with He initialization. The other parameters are:
batch size = 128, iterations = 300, learning rate = 1× 10−3.

(a) SNR

(b) MNR based on Eq.(3)

(c) ST-SIM

(d) SPQI

Fig. 7: Vibrotactile Quality Metrics
B. Evaluation

This part presents a comparative analysis of training results
under different configurations. Specifically, we evaluate the
performance of four setups, combining early and late fusion
techniques with two different loss functions (Ls from Eq.
(7) and Lp from Eq. (8)). The evaluated metrics are Signal-
to-Noise Ratio (SNR), MNR, Spectral Temporal SIMilarity
(ST-SIM), and Spectral Perceptual Quality Index (SPQI). VC-
PWQ codec [16] and the rate-scalable deep learning-based
codec [21], which we refer to as DeepVib, are adopted as the
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baselines for the vibrotactile signal. To the best of the authors’
knowledge, there are no previous results in the literature
for evaluating the tactile codec performance for normal and
tangential forces. As a result, the comparative experiments for
these modalities lack a baseline for reference.

1) Vibrotactile Evaluation: Fig. 7 shows metric results vs.
compression ratio for vibrotactile signals. As seen in Fig. 7a,
MPTC-Net outperforms VC-PWQ [16] and DeepVib [21]
within the 15–30 compression ratio range. Moreover, using
perceptual loss Lp yields better SNR than signal loss Ls.

MNR, plotted in Fig. 7b, is an evaluation metric that indi-
cates the perceptibility of reconstruction noise within a specific
frequency band. The two curves that use perceptual loss (red
and purple) demonstrate the best performance, compared to the
baselines and the results using signal loss. Although DeepVib
also used perceptual loss, our methods achieve greater im-
provements. The results obtained using signal loss perform
similarly to the VC-PWQ method.

Spectral Temporal SIMilarity (ST-SIM) is a Vibrotactile
quality assessment method that includes perceptual spectral
and temporal similarity measures [28]. In Fig. 7c, MPTC-
Net outperforms baselines across most compression ratios,
particularly at high compression levels. Early fusion results
are slightly better than late fusion.

Spectral Perceptual Quality Index (SPQI) computes a simi-
larity score based on a computed perceptually weighted error
measure [29]. It is an effective metric for assessing subjective
quality, where higher values indicate better performance. The
results shown in Fig. 7d indicate that the perceptual loss
outperforms both signal loss and VC-PWQ. Deep learning
methods show a clear improvement over VC-PWQ, and our
approach outperforms DeepVib at high compression ratios.
Among the evaluated methods, late fusion achieves the best
overall performance.

2) Force Evaluation: We evaluate both the normal and
tangential forces using the SNR metric. As shown in Fig. 8,
the SNR results vary from 20 to 35 and reflect a reliable
quality for compression ratios between 10 to 40. For high
compression ratios, the quality of normal force is slightly
better than that of tangential force. In the dataset, the normal
forces are more stable, while the tangential forces have some
randomness and greater complexity, which may cause slightly
lower reconstruction quality.

In conclusion, all four setups show comparable perfor-
mance, except early fusion with signal loss, which performs
worse. As shown in Fig. 8b, late fusion achieves better
reconstruction of tangential force, likely due to its superior
ability to reduce cross-modal interference.

C. Discussion

Regarding vibrotactile signals, our codec with perceptual
loss performs better in perceptual metrics, especially in SPQI,
which aligns well with subjective experimental results [29]. In
Fig. 7a, unlike VC-PWQ, the curve shows no upward trend at
low compression rates due to inherent distortion from the deep
learning-based method. Allocating more bits in entropy coding

(a) Normal Force

(b) Tangential Force

Fig. 8: Force Evaluation
offers limited performance gains, so training multiple models
to span a broader range of compression ratios is meaningful.

Perceptual metrics allow us to evaluate vibrotactile signal
quality without time-consuming user studies. However, since
SNR may not capture perceived force signal quality, future
work should include subjective tests to assess the multimodal
codec more comprehensively.

In summary, perceptual loss demonstrates significant im-
provements over signal loss and the baselines, particularly
when the compressed signals are evaluated using perceptual
metrics. Meanwhile, both early fusion and late fusion exhibit
superior performance on specific metrics, with the optimal
choice depending on practical considerations such as trans-
mission efficiency and model complexity.

V. CONCLUSION

In this paper, we proposed a ResNet-based multimodal
tactile codec to efficiently compress vibrotactile, normal force,
and tangential force. First, we considered the impact of mul-
tiple modalities on the perception threshold of the vibrotac-
tile signal and proposed a multimodal psychohaptic model
to design a perceptual loss function. We further introduced
early and late fusion strategies for multimodal signals and
perceptually trained deep learning models. Evaluation using
different quality metrics shows that the multimodal perceptual
tactile codec outperforms the baselines VC-PWQ and deepVib,
especially in vibrotactile perceptual quality. According to the
experiments, the perceptual loss and late fusion strategies im-
proved performance for the perceptual quality metrics. Future
research could further validate the effectiveness through user
experiments, extending the modalities to include temperature,
and applying it to VR and teleoperation systems.
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