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Abstract—This paper presents a novel framework for gen-
erating both visual and haptic textures from user-provided
text descriptions. The proposed text-to-haptic pipeline combines
generative AI with data-driven tactile rendering to enable
intuitive and perceptually accurate texture synthesis. A text-
to-image model (i.e., Stable Diffusion) generates high-quality
visual representations of textures from descriptive text prompts.
These visual textures are processed through a regression-based
deep learning architecture, termed AttributeNet, which predicts
perceptual attributes, such as roughness and softness, mapping
them onto continuous perceptual scales. Finally, an interpolation-
based texture authoring algorithm synthesizes vibrotactile signals
based on the predicted attributes, enabling us to render haptic
feedback aligned with the visual and textual input. To the
best of our knowledge, this is the first complete framework
to generate visual and haptic texture signals based on text-
based inputs. AttributeNet’s haptic attribute predictions achieved
improved accuracy over existing methods, and a user study
further validated the framework, with participants favoring its
quality and usability.

Index Terms—Haptic Texture, Text-to-Haptics, Tactile Feed-
back, Deep Learning, Generative AI, Multimodal Interaction.

I. INTRODUCTION

Among various haptic attributes, haptic texture is one of the
most critical for humans to perceive both the functional and
aesthetic qualities of surfaces [1]–[3]. It conveys sensations of
roughness, hardness, and slipperiness by generating multiple
signals related to contact dynamics between the finger or tool
and small-scale surface features [4], [5]. These signals typi-
cally consist of rapidly fluctuating pressure (either at a single
point or across a 2D area, depending on contact type) during
sliding interactions or a quasi-static pressure distribution map
in static contact. Ideally, generating such signals requires
both an accurate, high-speed simulation of contact dynamics
and a high-resolution surface geometry model. However, this
approach is not optimal for real-time rendering [6].

Recent research in haptic texture modeling/rendering has
primarily relied on data-driven approaches: related haptic
signals are recorded, modeled, and interpolated to reproduce
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them. In order to avoid complexity, most of the work assumed
tool-mediated interaction, which only needs the recording of
vibration [7]. These vibrations vary and are unique to each
surface when different interaction parameters are applied (e.g.,
scanning speed and applied force) [8]. A significant number
of researchers have modeled these textures by recording vibra-
tions as acceleration data, rendering them through tool-based
displays where surface-specific vibrations are synthesized
based on interactions [9], [10]. These modeling techniques
include stochastic modeling [11], [12] and deep learning-based
synthesis [3], [13], [14]. Furthermore, state-of-the-art texture
libraries derived from a large number of diverse textures
using these approaches have been built [9], [15], making the
modeling and rendering of haptic texture readily available for
researchers in various applications [11], [16]. However, one of
the main drawbacks of data-driven methods is that they can
only generate what has been explicitly modeled.

Consequently, researchers have recently turned their at-
tention towards generative methods capable of creating new
textures that are not modeled, aligning with user-defined
perceptual attributes such as softness, roughness, and bumpi-
ness. Most existing methods rely heavily on perturbing or
interpolating textures from libraries [17] and have achieved
significant accuracy in producing perceptually correct textures.
Recently, a few recent studies have adopted deep learning-
based approaches [18], such as generative adversarial networks
(GANs). While promising, these approaches have limitations,
including the need for large training datasets and high compu-
tational costs, making real-time rendering and texture gener-
ation challenging [19]. Consequently, interpolation-based tex-
ture authoring remains the preferred state-of-the-art approach
for new texture synthesis [17].

Despite the advancements in texture generation, both
interpolation-based and deep learning-based approaches have
largely overlooked two pivotal aspects. First, they do not inte-
grate visual representations of textures, which could greatly
enhance user engagement and usability [17], [18]. Second,
they lack mechanisms for interfacing with users, i.e., incor-
porating user inputs such as textual or verbal descriptions to
generate textures with desired perceptual and visual attributes
[17]–[20]. For instance, a user may wish to create a texture
described as ”a rough, soft carpet-like surface” with specific
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Fig. 1. The proposed framework for generating visual and haptic textures from text prompts. User-provided text prompts are processed by a Stable Diffusion
model to generate a corresponding image, which is then passed to a haptic attribute prediction model (AttributeNet) to estimate hard-soft and rough-smooth
levels. These attributes are mapped onto a 2D-Texture Authoring Space [17] to synthesize required texture via interpolation of vibration signals from a pre-built
texture library [15]. Users interact with the system on a touch surface, experiencing both visual and haptic feedback through a stylus equipped with a haptuator.
Additionally, sliders are provided for each attribute to refine and enhance the haptic texture feedback further.

visual and tactile properties as indices. This gap highlights the
need for algorithms capable of translating descriptive inputs
into textures with corresponding visual and haptic feedback.

Motivated by these challenges, we propose a novel frame-
work that bridges generative modeling and haptic rendering for
texture synthesis. With advancements in generative artificial
intelligence, particularly text-to-image synthesis models like
Stable Diffusion [21], new possibilities emerge to unify visual
and haptic texture generation. This study introduces a text-to-
haptic framework that leverages diffusion models to generate
visual textures from descriptive inputs and couples them with
data-driven tactile rendering [17] for haptic feedback.

The proposed pipeline consists of three key stages. Ini-
tially, a text-to-image model such as Stable Diffusion [21]
generates high-quality visual representations of textures from
user-defined text prompts. Subsequently, a deep learning-based
architecture, termed AttributeNet, employing ResNet [22] as
its backbone, predicts the perceptual attributes of textures, such
as roughness and softness, from the generated images. Finally,
an interpolation-based texture authoring algorithm [17], inte-
grated with a texture library [15] and rendering techniques
[23], generates tactile vibrations based on the predicted per-
ceptual attribute values. This integration of generative AI with
haptic texture authoring enables the framework to synthesize
perceptually accurate haptic textures from textual descriptions.
To the best of our knowledge, this is the first implementation of
an end-to-end, text-driven haptic texture generation framework
capable of synthesizing both visual and tactile outputs. This
text-based approach can also be enhanced by integrating voice-
to-text models, further expanding its potential applications.
By bridging generative visual models with haptic feedback,
this study introduces a novel direction for texture generation,
advancing the capabilities of existing texture libraries and
enabling greater flexibility for VR, AR, and HCI applications.

II. PROPOSED FRAMEWORK

The proposed framework, illustrated in Fig. 1, generates
both visual and haptic textures from user-provided textual
descriptions. It operates as a sequential pipeline comprising
two main components. The first component utilizes a text-to-
image generative model (i.e., Stable Diffusion) to create visual
textures and predicts corresponding haptic attribute values
(hard-soft, rough-smooth) from the generated images. The

second component synthesizes haptic textures by mapping the
predicted attributes to vibration signals that replicate the tactile
properties of the desired texture. This approach delivers a
multi-modal experience, combining visual and haptic feedback
from textual input. The following subsections detail the key
stages of the framework, including text-to-image generation,
the texture authoring algorithm, haptic attribute prediction, and
the overall rendering process and hardware setup.

A. Text to Texture Image Generation
Recent advancements in generative AI have led to growing

interest in text-to-image models due to their intuitive and
expressive capabilities for generating desired outputs [24]–
[26]. Among several text-to-image open-source models, in-
cluding GLIDE [27] and DALL-E [28], Stable Diffusion
[21] has emerged as a powerful tool, particularly for tasks
like photorealistic image generation and texture synthesis for
VR/AR applications [25]. Trained on the extensive LAION-
5B dataset [29], which includes real and synthetic textures,
clothing, and various objects, Stable Diffusion (SD) offers high
adaptability for diverse use cases.

For our framework, we therefore selected SD (v2.1) as the
backbone of the text-to-image generation module to synthesize
visual textures. Using the diffusers library [30], the model was
set to generate 512×512 pixel images to ensure high-quality
outputs. It is well established that prompt formulation plays a
pivotal role in text-to-image generation, as the specificity and
clarity of input text greatly affect the quality and relevance
of generated images [24]. To ensure the generated images
represent structured textures rather than unrelated visuals (e.g.,
landscapes), we used a concatenation approach, augmenting
prompts with fixed descriptors (i.e., real plain texture, zoomed-
in, top view, realistic, no curl, and high definition). These
descriptors, refined through experimentation, should hence-
forth always be included in every text prompt to ensure the
generated textures align with task requirements. This approach
remained consistent and was used to generate synthetic images
for training AttributeNet (Sec.II-C) and during perceptual
experiments at the backend (Sec.III-B).

B. Haptic Texture Authoring

Haptic texture authoring refers to the process of creating
virtual textures with desired tactile perceptions. Two primary
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Fig. 2. (a) 25 real texture samples used to create authoring space. (b) 2D authoring space mapping textures along the Hard-Soft and Rough-Smooth dimensions.
(c) Illustration of the synthesized tactile signal using the authoring space, generated by interpolating neighboring textures based on perceptual attributes.

data-driven techniques are commonly employed for this pur-
pose: deep learning-based approaches [18], and interpolation-
based techniques [17]. While deep learning methods, such as
generative adversarial networks (GANs), have been explored
for texture synthesis, they are computationally expensive, data-
intensive, and remain underexplored in the haptic domain [19].
In contrast, interpolation-based techniques, as proposed by
Hassan et al. [17], offer a computationally efficient alternative
and achieve high perceptual accuracy of 94% for authored
texture. It can generate new textures by interpolating between
existing texture models adopted from texture library [15] based
on input perceptual attribute values, specifically rough-smooth
(R-S) and hard-soft (H-S). Given the need for immersive
and real-time generation of haptic textures in this study, we
adopted the interpolation-based technique proposed by [17].

This interpolation-based approach relies on constructing a
structured authoring space (see Fig. 2), integrating two key
components: the affective space and the haptic model space.
The affective space is developed through psychophysical ex-
periments that explore human perception of texture. Partici-
pants evaluate real textures using bipolar adjective scales (e.g.,
rough-smooth, hard-soft), allowing researchers to map textures
into a two-dimensional space where each axis corresponds
to a specific perceptual dimension. Multidimensional scaling
and regression are employed to establish affective dimen-
sions, ensuring that the textures are positioned meaningfully
within this perceptual framework. The haptic model space is
constructed using tool-mediated acceleration signals recorded
during controlled interactions with surfaces. Parameters such
as sliding velocity and normal force are varied systematically
to capture the physical properties of textures. Features derived
from these acceleration patterns, including Mel Frequency
Cepstral Coefficients (MFCC), are extracted and reduced using
statistical techniques such as sequential forward selection and
principal component analysis (PCA) to isolate dimensions that
correlate strongly with the affective axes.

These two spaces are combined to create a unified 2D au-
thoring space that correlates perceptual attributes with physical
signal features. This space allows textures to be positioned
based on both their perceptual and physical characteristics.
To synthesize a new texture, the algorithm maps the desired
perceptual values into the authoring space, identifies the three
nearest textures using Delaunay triangulation, and calculates
interpolation weights based on the Euclidean distances to these

points. The final texture signal is computed as a weighted sum:

T(h−s,r−s) = (w1 × Sa) + (w2 × Sb) + (w3 × Sc) (1)

where, T(h−s,r−s) is the synthesized acceleration/vibration
pattern for the input perceptual attributes (h − s, r − s), and
w1, w2, and w3 are weights determined by the distances to the
three nearest points/textures Sa, Sb, and Sc.

For this study, the authoring space was built using 25
real texture samples, including natural and artificial materials
like wood and rubber, covering diverse tactile sensations
(Figure 2(a)). The constructed 2D space, shown in Figure 2(b),
organizes textures along the Rough-Smooth (R-S) and Hard-
Soft (H-S) dimensions. An example of texture synthesis using
the authoring space is illustrated for T(0.82,0.23)in Figure 2(c).
Initial three plots show the actual acceleration patterns for the
real texture models, while the final plot presents the weighted
synthesized acceleration for the authored virtual texture. No-
tably, the texture dataset including the authoring space with
perceptual attributes is adopted from [17], and is used through-
out the study, including for training AttributeNet (Sec. II-C).

C. Haptic Attribute Estimation

This study enables tactile experiences from user-defined
prompts, bridging visual and haptic modalities. While text-to-
image models (Sec. II-A) generate visual textures, and tactile
feedback is generated by the authoring algorithm (Sec. II-B), a
critical step involves predicting haptic attributes from images,
linking both modalities. There are two potential approaches
to estimating these attributes: either from textual descriptions
or generated images. Text-based prediction, despite relying on
language models and large labeled datasets, may struggle to
capture fine-grained haptic semantics and user intent, leading
to ambiguity and inconsistency that could limit accuracy [31].

Conversely, image-based prediction offers a structured rep-
resentation, as visual texture features inherently correlate with
haptic attributes such as roughness, hardness, and bumpiness
[32]. Thus, this study adopts an image-based approach em-
ploying a CNN-based architecture for haptic attribute pre-
diction. Unlike existing methods that predict user ratings for
specific attributes [5], [33], the proposed model maps the phys-
ical signal space to the authoring space, ensuring perceptual
relevance and compatibility with tactile authoring systems.
This approach aligns with the study’s goal of generating
perceptually accurate textures that align with user intent.
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1) Physical Texture Space: The physical texture space was
constructed using a combination of real and synthetic datasets.
Twenty-five distinct real-world textures were selected (see Fig.
2 (a)). Images were captured using a DP2 Quattro SIGMA
digital camera, mounted on a tripod at a fixed height of
300 mm, and resized to a final resolution of 512×512 pixels
for uniform processing. These real textures were the same
as those used to create the authoring space (Sec. II-B). To
enhance the dataset, synthetic images were generated using
Stable Diffusion with prompts aligned to real texture properties
(see Sec. II-A). Fig. 1 illustrates examples of text prompts
and their corresponding generated images. For instance, the
prompt ”a rough wood texture”, along with descriptors, was
used to generate variations of a real ”rough wood (S1)”
sample. Five synthetic images were generated per real texture,
resulting in a total of 150 images (25 real + 125 synthetic).
This augmentation introduced controlled variability, improving
the generalization capability of the haptic attribute prediction
model, particularly for handling generative model outputs.

2) 2D Authoring Space: The 2D authoring Space is the
same as illustrated in Fig. 2(b), where the 25 textures are
placed based on 2D space while preserving their perceptual
and tactile signal information in a way so that they are
placed on a continuous space that can synthesize required
perceptually correct new textures [17]. For the haptic attribute
prediction model, each texture was assigned two labels: one
for hard-soft (h-s) and one for rough-smooth (r-s), corre-
sponding to its position in the authoring space. Synthetic
images generated using Stable Diffusion were assigned the
same attribute values as their corresponding real textures. To
simulate perceptual variability and improve model robustness,
a small random noise (±0.01) was added to the attribute
values. This approach helps prevent overfitting, and enhances
generalization, ensuring that the model can learn robust map-
pings between images and haptic attribute values.

3) AttributeNet: The perceptual attribute prediction model
was designed to estimate texture attributes from raw texture
images. A CNN-based architecture was selected due to its
proven effectiveness in various texture classification [34]–[36]
and haptic texture attribute prediction [5], [33].

The proposed architecture is inspired by ResNet-50, a well-
known deep CNN model introduced in [22] and pre-trained on
the ImageNet dataset, which contains over 1.2 million labeled
images across 1,000 classes. To adapt ResNet-50 for haptic
attribute prediction, the final fully connected (FC) layer was
replaced with a custom sequence of three new FC layers, de-
noted as FC1, FC2, and FC3, followed by a regression output
layer. The sizes of these layers were set to 512, 128, 128,
and 2 units, respectively, where the two outputs correspond to
the predicted haptic attributes. The convolutional layers from
ResNet-50, pre-trained on ImageNet, were retained as feature
extractors, while the newly added FC layers were initialized
with random weights. Leveraging pre-trained networks is a
widely used strategy in the haptics domain as it enhances
generalizability and improves performance, particularly when
training datasets are limited [35], [37].

The model input consisted of preprocessed RGB texture
images resized to 224×224 pixels to match the input require-
ments of ResNet-50.ReLU was used as the activation function
in all intermediate layers, consistent with the original ResNet-
50 design. A linear activation function was applied to the
final output layer to enable continuous attribute prediction.
The model was implemented and trained using the Keras-
TensorFlow framework. The Adam optimizer (learning rate
= 0.001) was employed to minimize the Root Mean Squared
Error (RMSE) loss function. Training ran for 100 epochs, with
early stopping (patience = 10 epochs) to prevent overfitting.

D. Haptic Texture Rendering
The proposed framework (Fig. 1) systematically integrates

visual and haptic components for texture rendering. The pro-
cess begins with a user-provided text input, which is passed
to the text-to-image model. The generated image is then pro-
cessed by the haptic attribute prediction model (AttributeNet)
to estimate Hard-Soft and Rough-Smooth (h − s, r − s)
values. These values serve as input to the texture authoring
algorithm [17], which utilizes a haptic texture library [20]
and a texture rendering algorithm [23]. The algorithm selects
three neighboring textures based on their attributes, and their
respective haptic models, accounting for user-applied speed
and force [23] upon interaction with the virtual texture, are
interpolated to synthesize the texture as illustrated in Fig. 2.

To provide a comprehensive, end-to-end framework, a
graphical user interface (GUI) was developed to seamlessly
facilitate user interaction, as shown in Fig. 3. It features a
text input field (top-left), three selected neighboring texture
images (top-right) based on (h− s, r − s), and the generated
texture image (bottom). Users can experience real-time haptic
feedback from all textures upon interaction. To further enhance
user engagement and control, two adjustable sliders for R-S
and H-S enable dynamic customization of the generated signal.
These sliders modify the perceptual attribute point (h−s, r−s)
within the authoring space, which remains hidden from users.
Each slider spans the full attribute range, with extreme values
representing maximum roughness (0 for R-S) and maximum
hardness (0 for H-S). This feature was particularly targeted at
improving user immersion and feedback and overcoming any
discrepancy in attribute estimations by AttributeNet as well as
for user interactivity, as confirmed in Sec. III).

The system is deployed on a tablet PC with an active stylus
(Surface Pro 4 and Surface Pen, Microsoft), enabling user
interaction, text input, slider adjustments, and capturing speed
and force during virtual texture interaction. Haptic feedback is
provided by a voice-coil actuator (Haptuator MM1C; Tactile
Labs) mounted on the stylus, driven by signals from the texture
authoring algorithm (Eq. 1). These signals are dynamically
compensated, following [12], to account for the actuator’s
frequency response before transmission to an NI-DAQ (USB-
6351; National Instruments). An amplifier regulates the signal
strength between the DAQ and the haptuator. The overall setup
is illustrated in Fig. 3 and aligns with rendering methodologies
established in prior literature [20].
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Fig. 3. User study setup (left) and the interface presented to participants
during the psychophysical experiment (right).

III. EVALUATION

To evaluate our first-of-its-kind text-to-haptic texture gener-
ation framework, two primary evaluations were conducted: the
prediction accuracy of haptic attributes from generated texture
images, and a cross-modal user study assessing the perceptual
consistency between visual textures and haptic feedback.

A. Prediction of Haptic Attributes
To assess AttributeNet’s robustness and generalization, we

employed the leave-one-out cross-validation technique, as rec-
ommended in similar studies [5], [33]. In this approach, all
texture dataset instances were used for training, leaving one
out for testing. The model was trained on 24 real texture im-
ages and their corresponding synthesized images from Stable
Diffusion (SD), yielding 144 training samples. Evaluation was
performed on six images: one real and five SD generated.
Additionally, we tested the model without SD-images, using
only 24 images to assess performance with limited real data
and to analyze the effect of SD-images. Each scenario involved
25 training repetitions, totaling 50 runs across both cases.

For further validation, we compared AttributeNet with Vi-
sionNet [35], 1D-CNN [33], and VisualCNN [34]. All models
were trained under conditions as proposed by respective au-
thors, with the final layer adjusted to predict the two haptic
attributes. The Mean Absolute Error (MAE) was selected as
the primary metric, as it directly reflects prediction accuracy
and provides a clear assessment of model effectiveness [33].

1) Results and Analysis: Fig. 4 compares actual and pre-
dicted values for Rough-Smooth (R-S) and Hard-Soft (H-
S), where each predicted value represents the mean from
six images, incorporating both real and SD-generated tex-
tures. In most cases, the actual and predicted values align
well, demonstrating the effectiveness of the approach. Table
I presents MAE as a percentage, measured on a scale of
0 to 100, across all test samples. AttributeNet outperforms
other models, achieving an MAE of 9.87% for R-S and
9.21% for H-S when trained solely on real images. The
inclusion of SD-generated images further improves R-S to
7.47% and H-S to 8.16%, while VisionNet and 1D-CNN
show higher errors. Empirically, H-S exhibits larger errors
than R-S, suggesting that image-based models struggle with
compliance-related attributes, which inherently require tactile
interaction for accurate assessment. While integrating tactile
sensing could enhance predictions, it remains impractical in
this setting [5]. AttributeNet, like 1D-CNN, employs ResNet-
50 for feature extraction, whereas VisionNet utilized AlexNet,

Fig. 4. Comparison of actual vs. predicted values from AttributeNet.

TABLE I
THE MAE (%) OF ATTRIBUTENET AND EXISTING METHODS.

Method Real Images Real + SD Images

R-S H-S R-S H-S

Visual-CNN [34] 21.12 26.32 31.38 27.65
VisionNet [35] 16.74 13.76 15.41 12.86
1D-CNN [33] 14.5 10.91 9.86 11.2
AttributeNet (ours) 9.87 9.21 7.47 8.16

confirming the effectiveness of pre-trained models in improv-
ing generalization [33], [35]. Notably, the Just Noticeable
Difference (JND) for MAE in texture perceptual similarity
is around 10% [5], and both R-S and H-S fall below this
threshold, reinforcing the proposed model’s reliability in esti-
mating haptic attributes. However, larger errors are observed
for artificial materials like S7 (roof tile) and S23 (rubber mesh)
due to variations in SD-images. Broad terms such as ’roof tile’
or ’rubber mesh’ yield diverse outputs, ranging from smooth to
rough surfaces. More precise prompts, like ’fine rubber mesh
with small perforations,’ could improve alignment between
generated and real textures. Importantly, we observed that
these discrepancies can be mitigated using the attribute slider
(see Sec. II-D) as discussed in the following section.

B. User Study

This study evaluated the system’s usability, comfort, and
quality in generating haptic and visual textures from text input.

1) Stimuli: Participants provided text prompts describing
the textures they wished to generate. Haptic textures were
synthesized using the pipeline described in Section II. The
study included three conditions: Txt-T (Text-Texture), Txt-TI
(Text-TextureImage), and Txt-TIS (Text-TextureImageSlider).
In Txt-T, participants experienced haptic feedback without
visual input, interacting with a blank tablet interface. In Txt-TI,
haptic textures were presented with visual representations gen-
erated by the Stable Diffusion model. In Txt-TIS, participants
used two interactive sliders to adjust perceptual attributes, as
detailed in Sec. II-D. These conditions enabled participants to
compare different levels of feedback and control.

2) Procedure: Participants sat at a table with a tablet PC
and wore headphones to minimize distractions (see Fig. 3(a)).
They were provided with a manual containing sample text
prompts and corresponding generated images to help them
understand how specific text maps to texture-based visuals
and haptic feedback; examples of these prompt–image pairs
are illustrated in Fig. 1. Afterwards, participants had a short
practice session where they entered prompts, viewed the gen-
erated textures, and felt the haptic output to become familiar
with the system before the experiment began (see Fig. 3(b)).
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Fig. 5. Box plot of user ratings from the psychophysical study of the overall framework (right) with evaluation measure descriptions (left). Ratings were on
a seven-point Likert scale. Red lines show mean ratings, and significant differences are marked with brackets and asterisks (*p < 0.05, **p < 0.01).

During the study, participants entered text prompts to gen-
erate textures and experienced them under all three conditions
(Txt-T, Txt-TI, Txt-TIS). After testing each condition for a
prompt, they rated the system on a seven-point Likert scale,
assessing System Fidelity (realism and response accuracy)
and User Experience (immersion, ease of use, and learning
curve). Descriptions of these evaluation measures are provided
in Fig. 5. This process was repeated for five prompts per
participant, with the order of conditions randomized to prevent
bias. Eleven participants (2 females, 9 males, aged 22–37,
mean age: 28.7) with no reported disabilities took part in
the study. Each session lasted approximately 40 minutes, and
participants were compensated for their time.

3) Results and Analysis: Each participant provided 75
ratings (5 prompts × 3 conditions × 5 measures), averaged
across prompts to yield 15 ratings per participant, resulting in
165 total ratings. Assumption checks confirmed homogeneity
of variance (Levene’s test, all p > 0.26), with minor deviations
from normality in a few groups (e.g., Txt-TIS in Engagement:
W = 0.784, p = 0.006). Given ANOVA’s robustness to such
violations, a one-way ANOVA was applied and confirmed
statistically significant differences between conditions for all
measures (p < 0.05). Tukey HSD post-hoc tests were used for
pairwise comparisons. The mean ratings followed a consistent
trend: Txt-TIS received the highest scores (5.76), Txt-TI
was rated moderately higher (4.55), and Txt-T scored the
lowest (3.20). Fig. 5 presents box plots illustrating the rating
distributions, means, and significant differences.

Across all measures, Txt-TIS significantly outperformed the
other conditions, followed by Txt-TI, with Txt-T consistently
rated lowest. Correctness improved with the addition of visual
feedback and interactive control (p < 0.01), suggesting that
users found textures more accurate when they could adjust
perceptual attributes. Realism was significantly higher for
Txt-TIS compared to both Txt-T (p < 0.01) and Txt-TI
(p < 0.05), indicating that interactive controls play a key role
in making textures feel authentic. Immersion and engagement
followed the same pattern (p < 0.01), reinforcing the idea that
combining haptic, visual, and interactive elements enhances
user involvement. The learning curve showed significant im-
provement from Txt-T to Txt-TI (p < 0.01) and Txt-TIS
(p < 0.05), but no difference between Txt-TI and Txt-TIS
(p = 0.881), suggesting interactivity does not add cognitive
load. These findings confirm that combining haptic textures

with visual and interactive controls results in a more accurate
and engaging experience over haptic feedback alone [33].

C. Limitations and Future Work
While the proposed framework successfully integrates text-

driven generative AI with haptic texture synthesis, several lim-
itations must be considered. The system relies on Stable Diffu-
sion for visual texture generation, which, despite its effective-
ness, may introduce inconsistencies in perceptual accuracy due
to variations in the generated images (see Sec. III-A1). These
variations directly affect the haptic attribute prediction model,
as it depends on the generated texture images. One possible
improvement is fine-tuning SD with the available dataset to
condition the generation process, ensuring that the output im-
ages align with the dataset’s characteristics [31]. Alternatively,
an ensemble approach incorporating semantic weighting from
text prompts could dynamically adjust predicted attributes,
enhancing robustness. Both strategies involve fine-tuning SD
and leveraging text-driven semantic weighting, and they can be
explored as future improvements. The framework also relies
on an interpolation-based authoring algorithm with a limited
texture dataset, constraining the diversity of synthesized haptic
feedback. Expanding this dataset would increase the resolution
of the authoring space, enabling finer variations and improving
feedback accuracy. Additionally, the system maps textures
using only two perceptual dimensions, rough-smooth and
hard-soft, whereas real-world surfaces exhibit more complex
characteristics [5], [38]. Introducing additional dimensions,
such as flat-bumpy, could improve realism. Nonetheless, future
perceptual studies could explore the effect of using fixed
prompts across participants to gauge system reliability.

IV. CONCLUSION

This study introduced a novel framework for generating
visual and haptic textures from text descriptions, combining
Stable Diffusion for image synthesis with an interpolation-
based haptic authoring approach. By linking generated images
with perceptually mapped tactile signals, the system enables
intuitive texture creation that aligns both visually and hap-
tically with user input. A user study showed that incorpo-
rating visual feedback and interactive controls enhances the
perceived accuracy and realism of generated textures compared
to haptic-only methods. These results highlight the potential of
text-driven multimodal texture generation for immersive and
intuitive interactions in digital environments.
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