
Multi-Channel Vibrotactile Signal Compression
Based on Implicit Neural Representation

Yuto Ozawa
School of Engineering

The University of Osaka
Suita, Osaka, Japan

ozawa.yuuto@ist.osaka-u.ac.jp

Takuya Fujihashi
Grad. Sch. of IST

The University of Osaka
Suita, Osaka, Japan

tfuji@ist.osaka-u.ac.jp

Akihiro Kuwabara
Grad. Sch. of IST

The University of Osaka
Suita, Osaka, Japan

kuwabara.akihiro@ist.osaka-u.ac.jp

Shunsuke Saruwatari
Grad. Sch. of IST

The University of Osaka
Suita, Osaka, Japan

saru@ist.osaka-u.ac.jp

Tom Ogura
Grad. Sch. of IST

The University of Osaka
Suita, Osaka, Japan

ogura.tom@ist.osaka-u.ac.jp

Takashi Watanabe
Grad. Sch. of IST

The University of Osaka
Suita, Osaka, Japan

watanabe@ist.osaka-u.ac.jp

Abstract—Haptic feedback is critical for enhancing immersion
in extended reality applications. To enable realistic and immersive
experiences, a compact representation of multi-channel vibro-
tactile signals is essential for storage and streaming. To obtain
the compact representation, existing vibrotactile coding schemes
leverage psychohaptic models to reduce perceptual redundancy
in the haptic domain. However, the coding efficiency is still low.
In this paper, we integrate the psychohaptic model and the
implicit neural representation (INR), i.e., the power of neural
networks (NNs), to obtain a further efficient representation
for multi-channel vibrotactile signals. For this purpose, the
proposed scheme overfits the multi-channel vibrotactile signals
to a small NN and regards the overfitted weights of the NN
as the representation of the vibrotactile signals. In addition,
we propose a psychohaptic-inspired loss function for training
the proposed NN architecture to obtain the compact repre-
sentation with a slight degradation of the user’s perceptual
quality. Experiments using an open multi-channel vibrotactile
dataset and the user perception-aware metric demonstrate that
the proposed scheme simultaneously achieves compact and less
quality-distorted vibrotactile representations compared with the
state-of-the-art vibrotactile coding schemes.

Index Terms—vibrotactile signals, implicit neural representa-
tion, psychohaptic model

I. INTRODUCTION

Haptic feedback [1] is a key modality to improve immersion
through extended reality applications by introducing the feed-
back in addition to visual and audio stimuli. Many studies have
exploited an arrayed (multi-channel) haptic sensor and actuator
to enhance the interaction between remote and physical envi-
ronments. For example, a multi-actuator vibrotactile display
utilizing a 2D array of piezoelectric actuators is designed
in [2] and spherical tangible objects [3]. Another study
in [4] highlighted the multi-actuator haptic gloves for various
applications, including virtual reality and teleoperation.

Storing and sending such multi-channel vibrotactile signals
requires a large data volume with an increase in the number

of channels [5], [6]. Vibrotactile signal compression [5], [7],
[8], [9], [10], [11], [12] is designed to represent high-quality
signals with a small data volume for single-channel and multi-
channel vibrotactile signals. In particular, this study focuses on
offline-acquired vibrotactile signals, which are crucial in real-
world applications such as virtual training systems, remote
robot control in structured environments, or pre-programmed
haptic experiences in VR applications. The existing studies [5],
[7], [8], [9], [10] aimed to remove perceptual redundant
information to realize a compact representation of vibrotactile
signals. Here, perceptual redundancy [13] means that compo-
nents of the signal are not perceived by a user and can be
omitted.

Existing studies have proposed signal processing-based
solutions to reduce perceptual redundancy. A key concept
of the existing solutions is to introduce the psychohaptic
model [7], i.e., unequal frequency sensitivity of the haptic
feedback considering user perception, for the compression.
In the signal processing-based solutions, the state-of-the-art
for single-channel and multi-channel vibrotactile signals is
Vibrotactile Signal Compression based on Perceptual Wavelet
Quantization (VC-PWQ) [8] and MVibCode [5]. In both
methods, each channel of the vibrotactile signal is trans-
formed into a frequency-domain representation using discrete
Wavelet transform (DWT). A different amount of bits is
assigned to each band of DWT coefficients based on the
psychohaptic model to remove the perceptual redundancy.
Here, MVibCode further introduces the clustering method for
the multi-channel vibrotactile signals to realize the differential
compression across the channels. However, existing studies
on single-channel haptic codecs using neural network (NN)
demonstrated that the typical signal processing-based codecs
suffered from low coding efficiency [11].

Our study aims to obtain a compact representation of
multi-channel vibrotactile signals empowered by NN. For this
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purpose, we propose a novel scheme for multi-channel vibro-
tactile compression inspired by the concept of implicit neural
representation (INR) [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25]. INR architectures consist of a small
NN architecture to train the coordinate-to-value mappings. It
overfits the desired signal to a small NN architecture through
the training process, and then takes the feed-forward process
for the overfitted NN architecture to reconstruct the desired
signal. Although the overfitting process requires a large encod-
ing delay, the proposed scheme exploits the concept of INR
for a memory-efficient format by overfitting the desired multi-
channel vibrotactile signals to the proposed NN architecture
and regards the overfitted weights of the NN architecture as a
compact representation of multi-channel vibrotactile signals.
We additionally design a novel loss function inspired by
the psychohaptic model to yield a compact representation
considering the perceptual redundancy.

Experiments using a multi-channel vibrotactile dataset [26]
and perception-aware metric [27] show that the proposed
scheme can obtain compact representation from the multi-
channel vibrotactile signals with less perceptual quality degra-
dation compared to the state-of-the-art vibrotactile compres-
sion schemes. In addition, the proposed psychohaptic-inspired
loss function brings further compact representation under
the same perceptual quality against the typical mean square
error (MSE) loss function.

Related Work and Contributions: In recent years, an auto-
encoder (AE)-based solution [11] has been proposed for an-
other NN-empowered vibrotactile compression. In contrast to
the typical AE-based compression studies for image and video
signals, it adopts a loss function considering perceptual thresh-
old with the damage threshold inspired by the psychohaptic
model for training encoding and decoding architecture to yield
compact representation considering user perception from the
vibrotactile signals.

A key difference between the AE-based architecture and the
INR architecture is to train the architecture using numerous
vibrotactile signals or single vibrotactile signals. It brings an
advantage even when the training dataset is limited.

The existing INR architectures [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25] are mainly designed for
image and video signals. Our study is the first to propose an
INR-empowered vibrotactile compression. For efficient repre-
sentation of multi-channel vibrotactile, the proposed scheme
has three-fold contributions.

• The proposed scheme decodes the desired channel’s vi-
brotactile signals by feeding the channel ID to the INR
architecture.

• A loss function considering a psychohaptic model to
obtain a memory-efficient format considering user per-
ception.

• We use an open multi-channel vibrotactile dataset for
experiments and evaluate the compression rate (CR)
and perceptual quality in terms of Spectral Temporal
SIMilarity (ST-SIM) [27] across different user’s gestures.

II. PROPOSED SCHEME

A. Overview

Fig. 1 shows an end-to-end architecture of the proposed
scheme. The proposed scheme assumes a scenario in which
N three-axis accelerometers [28], designed to record vibro-
tactile signal, are attached to the fingers. Each accelerometer
is assigned a unique ID i. Each accelerometer records the
three-dimensional vibrotactile signal, which is transformed
into a one-dimensional vibrotactile signal using DFT321 [29].
Here, the one-dimensional vibrotactile signal corresponding to
accelerometer i is defined as vi ∈ RT , where T represents the
number of samples in the one-dimensional vibrotactile signal.
The vibrotactile signals collected from multiple accelerometers
are integrated into a multi-channel vibrotactile signal V ,
defined as:

V = {vi | i = 1, . . . , N}.

Based on the multi-channel vibrotactile signal, we construct a
dataset D, which is a set of the tuple of each normalized ID
i ∈ [0, 1] along with its corresponding ID’s vibrotactile signal
vi, as follows:

D = {(i,vi) | i ∈ [0, 1]}.

In the encoder-side, an INR architecture is defined as
Φ(·;θ) : R1 → RT with learnable parameters θ to overfit the
desired multi-channel vibrotactile signal. During the training
process, the parameters θ are optimized to learn the mapping
from the ID i to its corresponding vibrotactile signal vi using
the dataset D. For this optimization, a loss function g is
adopted to minimize the perceptual loss between the original
vi and the reconstructed vibrotactile signal v̂i = Φ(i;θ). In
summary, the optimization problem is defined as follows:

θ∗ = argmin
θ

g(vi,Φ(i;θ)) (1)

The trained parameters θ∗ are then pruned and quantized
to remove redundant information. The compressed parameters
are stored or transmitted as a lightweight representation of the
multi-channel vibrotactile signal.

In the decoder, the ID i’s vibrotactile signal v̂i is recon-
structed by the INR architecture Φ(i;θ∗) parameterized by the
compressed parameters θ∗. Here, the INR architecture in the
decoder is identical to that in the encoder. The accelerometer
ID i is fed into the INR in parallel, and the correspond-
ing vibrotactile signal is reconstructed. By integrating the
reconstructed vibrotactile signal of all the accelerometers, the
decoder finally decodes the multi-channel vibrotactile signals
V̂ .

B. INR Architecture

Fig. 2 illustrates the detailed structure of the proposed INR.
The proposed INR consists of an input embedding layer and
L upscale blocks.

The input embedding layer, composed of positional em-
bedding and a multilayer perceptron (MLP), transforms the
input, i.e., accelerometer ID i, into a high-dimensional feature.
The high-dimensional feature enhances the ability to represent
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Fig. 1: Overview of the proposed scheme

Fig. 2: Architecture of the proposed INR

high-frequency components of the desired vibrotactile signal
under a small neural network.

The upscale block maps the extracted feature to a vector
of length T , corresponding to the vibrotactile signal for
accelerometer ID i. Each upscale block consists of a one-
dimensional convolutional layer, a one-dimensional pixel shuf-
fle layer, and an activation function. Let sl denote the scaling
factor of l-th layer. In the l-th layer, the one-dimensional
convolutional layer increases the number of channels in the
input feature map wl to wl−1 × c · sl. The one-dimensional
pixel shuffle layer then expands the resolution of the feature
map to wl−1·sl×c. At the L-th upscale block, the resolution of
the feature map becomes w0 · s1 . . . sL× c. In the end, a 1×1
one-dimensional convolutional layer is applied to transform
the feature map into a vibrotactile signal with a resolution of
T × 1.

C. Loss Function

The mean squared error (MSE) is widely used for training
INR architectures as a loss function. The minimization of
MSE aims to overfit the INR architecture to the entire signal.
However, the loss function does not account for perceptual
sensitivity differences within the vibrotactile signal, leading
to remaining perceptual redundancy. The proposed scheme
introduces a novel loss function based on a psychohaptic
model. It considers unequal weight for each frequency band
of the vibrotactile signal to achieve a more compact data
representation.

The loss function is designed based on the perceptual thresh-
old defined in the psychohaptic model [7]. The perceptual
threshold represents the minimum level required for a stimulus
of a signal to be perceivable, being defined at each frequency,

Fig. 3: Perceptual threshold adapted from [8]

quantifying human tactile sensitivity across different frequency
bands. The psychohaptic model indicates that the perceptual
threshold rises sharply beyond 800 Hz, which implies tactile
feedback in higher frequency bands is nearly impossible to
perceive [8].

However, signals with sufficiently high amplitudes and
pressures in high-frequency bands can still cause discomfort or
damage to user perception. Thus, the perceptual threshold may
fail to reproduce human perceptual characteristics. In the audio
domain, the damage threshold is approximately 90 dB higher
than the minimum perceptual threshold [30], serving as a
benchmark for evaluating the physical effects of strong stimuli
on sensory organs. In the tactile domain [8], they consider that
the damage threshold is approximately 77 dB higher than the
minimum perceptual threshold, where the minimum perceptual
threshold is -77 dB.

In our study, we follow the perceptual threshold considering
the damage threshold and cut off the frequency components of
the vibrotactile signal exceeding 0 dB in the perceptual thresh-
old to effectively reduce the perceptual redundancy within
the vibrotactile signal of each accelerometer. The perceptual
threshold considering the damage threshold is defined as
follows:

t(f) =


∣∣∣∣∣ 62 dB(

log10

(
6
11

))2
[
log10

(
f

550Hz + 6
11

)]2∣∣∣∣∣ − 77 dB, if 0 ≤ f ≤ 780

0, if f>780
(2)

Fig. 3 shows the perceptual threshold considering the dam-
age threshold as a function of frequency bands. It indicates
that users more easily perceive vibrotactile responses below
780 Hz. In addition, the haptic feedback in high frequency
bands may cause some effects in user perception, and thus
such components are considered as ”Do not care” ∅ for
reconstruction. Based on this property, we define a filter h(f)
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to cut off the contribution of high-frequency components as
follows:

h(f) =

{
1, if 0 ≤ f ≤ 780

∅, if f>780
(3)

Our loss function is designed to compare the frequency
components of the original and the reconstructed vibrotac-
tile signals using the binary filter. Let Si(f) denote f -th
frequency response obtained by applying the discrete cosine
transform (DCT) to i-th original vibrotactile signal vi, and
Ŝi(f) denote the frequency response obtained from the i-th
reconstructed vibrotactile signal Φ(i;θ). The loss function is
defined as:

θ∗ = argmin
θ

N∑
i=1

g(vi, v̂i) (4)

g(vi, v̂i) =

∑
f

(
h(f) · Si(f)− h(f) · Ŝi(f)

)2∑
f

(
h(f) · Si(f)

)2 (5)

The loss function emphasizes the response gap in frequency
bands with high sensitivity, effectively preserving perceptually
important components while optimizing data representation.

D. Model Compression

The trained parameters θ∗ efficiently represent multi-
channel vibrotactile signals. To further enhance compactness,
we introduce a sequence of model compression operations.

1) Model Pruning: In the beginning, global unstructured
pruning is applied to the trained parameters. Specifically,
each parameter θi ∈ θ∗ is retained or pruned based on the
magnitude of the parameter |θi| and a threshold θq based on
the q-percentile magnitude of the parameters as follows:

θ =

{
θi, if θi ≥ θq

0, otherwise
(6)

After the model pruning, the INR architecture is retrained
and fine-tuned using the same dataset D to retain adequate
representational capability using the pruned parameters.

2) Model Quantization and Encoding: The pruned and fine-
tuned parameters are uniformly quantized to a bit depth Nb.
This quantization is a layer-wise operation. For a parameter
set µ ∈ θ corresponding to each layer of the INR architecture,
the quantized parameter set µq is obtained as follows:

µq = round

(
µ− µmin

2Nb

)
s+ µmin, s =

µmax − µmin

2Nb
, (7)

where round(·) denotes rounding to the nearest integer, and
µmax and µmin represent the maximum and minimum values
of the parameters µ, respectively. The quantized tensor µq is
then converted into a binary sequence using Huffman coding.
Notably, for smaller bit depths, the quantized parameters µq

are more likely to take values near zero, making Huffman
coding particularly effective for compression.

III. EVALUATION

A. Settings

Datasets: An open vibrotactile dataset provided by [26] was
used for evaluation. The dataset consists of touch-evoked skin
vibrations recorded by 30 accelerometers from four subjects.
The accelerometers were placed on the dorsal surface of
the subject’s right hand to prevent interference with touch
interactions. Due to the characteristics of the vibrations in
the hand, the recorded signals are very similar to those on
the volar surface. Vibrotactile signals were measured while
subjects performed 13 different manual gestures. The gestures
were chosen to be similar to those used when interacting
with the environment in everyday life. Specifically, in gestures
1 to 5, a subject taps a steel plate using the thumb, index
finger, middle finger, ring finger, and little finger, respectively.
Gesture 6 represents the tapping action on the same steel plate
using both the index and middle fingers, while gesture 7 is a
tapping action performed with the index, middle, ring, and
little fingers. Gesture 8 is a tapping action using all fingers. In
gesture 9, a subject slides the index finger across the surface
of a steel plate to perceive its texture. In gestures 10 and 11,
a subject grasps cylindrical objects using the thumb and index
finger. Gesture 12 is the action of grasping a plastic sphere
using all fingers. Finally, Gesture 13 represents a tapping
action on the surface of a steel plate using a stylus held
between the thumb and index finger.

This paper selected vibrotactile signals from one of the four
subjects for evaluation. In addition, this paper initially used the
measured vibrotactile signals when a subject taps a steel plate
with the ring finger, i.e., gesture 4, to evaluate the baseline
performance and the other 12 gestures to discuss the gesture-
invariant performance of the baseline schemes.
Metric: We use CR as the metric for the data size representing
multi-channel vibrotactile signals. CR is defined as follows:

CR =
Total number of bits for original signals

Total number of bits for compressed representation
(8)

In the original vibrotactile signal, 32 bits are assigned per sam-
ple, and 1200 samples are measured using each accelerometer.

Two metrics of the vibrotactile signal quality were consid-
ered for comparison: (1) ST-SIM [27] and (2) Signal-to-Noise
Ratio (SNR) [31]. SNR is defined as follows:

SNR = 10 log10

(
∥V ∥2F

∥V̂ − V ∥2F

)
, (9)

where ∥V ∥2F is the squared Frobenius norm of the matrix
V . ST-SIM is a perceptual metric for vibrotactile signals.
ST-SIM uses spectral and temporal properties of the original
and reconstructed vibrotactile signals to compute a perceptual
similarity score between 0 and 1.
Baseline: The first and second baselines are VC-PWQ [8] and
MVibCode [5], respectively. VC-PWQ is the state-of-the-art
for vibrotactile compression and a modified version of haptic
codec [7]. MVibCode extends VC-PWQ to multi-channel vi-
brotactile signals. Specifically, it proposes a clustering module
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over multiple accelerometers to find the cluster head and
implements differential coding between the cluster head and
cluster members in each cluster. We set a clustering threshold
gthr of 0.1 to show the best performance of MVibCode
with the clustering module. Note that the performance of
MVibCode and VC-PWQ is the same at gthr = 0, since it
does not use clustering between the multiple channels.

The other baselines are variants of the proposed schemes un-
der the different loss functions. The first variant is the proposed
scheme with a loss function of MSE between the original and
reconstructed vibrotactile signals. The improvement against
this baseline represents the quality improvement considering
the perceptual threshold. The second variant integrates the
MSE and proposed loss functions to discuss the impact of
the integration on the reconstruction quality.
Hyperparameter Details: We train an individual INR model
for each gesture using the Adam optimizer at a learning rate
of 1e-3. We adopt a cosine annealing learning rate schedule,
with a batch size of 1, 500 training epochs, and 100 warmup
epochs. The INR architecture consists of 4 upscale blocks with
upscale factors of 10, 8, 5, and 3, respectively. By varying the
hidden dimensions of the MLP and the channel dimensions of
the upscale blocks, we can construct INR models of different
sizes. For input embedding parameters, we set b = 1.25 and
l = 30.
Implementation Detail: All the evaluations are performed
with CPUs of Intel Core i9-10850K and i9-13900KF and with
GPUs of NVIDIA GeForce RTX 3080. Our proposed method
is implemented, trained, and evaluated using PyTorch 2.2.0
with Python 3.10. Here, the average decoding latency of the
proposed scheme is 2.219 ms (approximately, 676 kHz). Two
baselines were implemented using MATLAB software.

B. Baseline Performance

Fig. 4 (a) shows the quality of the reconstructed vibrotactile
signals in terms of SNR under the different CRs. We can see
the following key observations:

• VC-PWQ achieves the best SNR performance, especially
in low CR regimes.

• The proposed scheme achieves the best performance
against the variants of other proposed schemes under the
different CRs.

• Other proposed schemes are less quality under the same
CRs since training the entire signal using a small NN
architecture is difficult.

• MVibCode with the clustering module suffers from lower
reconstruction quality than the SNR index of VC-PWQ,
irrespective of CRs. MVibCode is well-performed in a
closed multi-channel vibrotactile signal dataset [5]. How-
ever, the clustering-based differential coding causes low
quality at high CR regimes using an open dataset [26].

Fig. 4 (b) shows the ST-SIM index under the different
CRs. We can see that the proposed scheme achieves the best
perceptual quality when the CR is up to 16. The other variants
of the proposed scheme do not achieve a similar perceptual
quality. VC-PWQ follows almost the same quality in a low
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Fig. 4: Reconstruction quality as a function of compression
ratio under the different quality metrics in gesture 04. Here,
the gesture is a tapping action on a steel plate using the ring
finger. (a) SNR, (b) ST-SIM

CR regime. However, the perceptual quality suddenly degrades
at a certain CR because the bit depth for the mid-frequency
components, i.e., those sensitive to human perception, must be
reduced as the CR increases. The above results highlight that
1) the proposed representation is effective in storing/sending
high-quality, e.g., ST-SIM index above 0.9, and low-rate multi-
channel vibrotactile signals compared to the state-of-the-art
vibrotactile coding solutions, and 2) the proposed loss function
considering the perceptual threshold contributes to improving
the perceptual quality compared to the typical MSE loss
function. Here, the ST-SIM score is linearly correlated with
the subjective ratings, i.e., the mean opinion score (MOS) [27],
and thus even a 0.1 improvement in ST-SIM results in an
improvement in the perceptual quality of the vibrotactile
experience.

C. Impact of User Gestures

Figs. 5 (a) through (l) show the results of the ST-SIM index
as a function of CRs for 12 different gestures. The detailed
setting of each gesture is mentioned in Sec. III-A. We can see
the following findings from the results:

• When we see the gap between the proposed scheme and
VC-PWQ, the proposed scheme maintains a high ST-SIM
index, i.e., above 0.9, in a high CR regime compared to
VC-PWQ, regardless of the gestures.

• In some gestures, the ST-SIM index of the proposed
scheme suddenly degrades at a high CR, and it is lower
than the ST-SIM index of VC-PWQ and MVibCode.
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(a) Gesture 01: tapping using thumb
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(b) Gesture 02: tapping using index finger
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(c) Gesture 03: tapping using middle finger
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(d) Gesture 05: tapping using little finger

0 4 8 12 16 20
Compression Ratio

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ST
-S

IM

VC-PWQ
MVibCode
Proposed(MSE)
Proposed(MSE+Eq.(5))
Proposed(Eq.(5))

(e) Gesture 06: tapping using index and
middle fingers
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(f) Gesture 07: tapping using index, middle,
ring, and little fingers
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(g) Gesture 08: tapping using all fingers
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(h) Gesture 09: sliding using index finger
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(i) Gesture 10: grasping using thumb
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(j) Gesture 11: grasping using index finger
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(k) Gesture 12; grasping using all fingers
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(l) Gesture 13: tapping using a stylus held
between thumb and index finger

Fig. 5: ST-SIM index as a function of compression ratios across different gestures. We note that the performance in gesture 04
was shown in Fig.4 (b).

• In gestures 3 and 6, an integration of MSE and proposed
loss functions maintains a high ST-SIM index at a high
CR.

Among the gestures, gesture 09 (sliding using the index finger)
revealed the most significant improvement in ST-SIM over
the baselines, demonstrating the effectiveness of the proposed
scheme for continuous tactile movements. In contrast, gesture
08 (tapping using all fingers) showed the lowest improve-
ment, suggesting that simultaneous multi-finger activations
may introduce complex interference patterns that challenge
the compact representation.

IV. CONCLUSION AND FUTURE WORK

This paper proposed a novel coding scheme for multi-
channel vibrotactile signals. The proposed scheme integrated
an INR architecture for training accelerometer ID-to-signal
mapping, a loss function based on a psychohaptic model,

and model compression for overfitted weights to yield a
compact representation of vibrotactile signals with a slight
degradation of perceptual quality. Experiments demonstrated
that the proposed scheme realizes better-quality vibrotactile
signals under the same CR, especially up to a CR of 10,
compared with the VC-PWQ and MVibCode schemes across
different gestures.

There are several extensions for the INR architecture and the
loss function for future work. For example, Fourier-based [32],
[33], [34] and Wavelet-based [35] embedding can represent
high-frequency details in a small model size. In addition, an
optimal integration of MSE and proposed loss functions with
the entropy function [36] can achieve the best rate-distortion
performance for each subject and corresponding gesture.
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brotactile signal compression based on perceptual wavelet quantization,”
in IEEE World Haptics Conference (WHC), 2021, pp. 427–432.

[9] R. Chaudhari, C. Schuwerk, M. Danaei, and E. Steinbach, “Perceptual
and bitrate-scalable coding of haptic surface texture signals,” IEEE
Journal of Selected Topics in Signal Processing, vol. 9, no. 3, pp. 462–
473, 2015.
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