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FS-Net: An Encoder-Decoder Architecture for

Catheter Segmentation and Contact Forces

Estimation in Intracardiac Catheters
Pedram Fekri1, Mehrdad Zadeh2, Javad Dargahi1

Abstract—Surgeons require accurate catheter visualization and
force estimation during catheter-based surgeries. Segmentation
is crucial for both catheter visualization and force estimation
purposes. However, using separate models for segmentation and
force estimation is computationally costly. Recently, sensor-free
vision/deep learning-based models have shown reasonable per-
formance in estimating the applied forces during such surgeries,
aiming to reduce the risk of surgical error. These models,
however, require pre-processing to cleanly segment the catheter
from the background in input images, which increases computa-
tional complexity and reduces system throughput. In this work,
an encoder-decoder architecture is presented to simultaneously
segment the catheter and estimate the applied forces in 2D. The
presented method is designed to be deployed on a monoplane
fluoroscopy machine. This multi-output network takes a raw
image of the catheter’s deflection and outputs both the segmented
shape of the catheter and the estimated forces in 2D. Similar
to object detection models, the network solves a classification
problem for segmentation and a regression problem for force
estimation. This integrated approach provides the estimated
forces and segmented catheter shape within a single end-to-end
model. Validation results show that the model accurately maps
raw RGB images to the 2D force space and precisely segments
the catheter.

Index Terms—Semantic Segmentation, Multitask segmenta-
tion, Catheter Force estimation, Catheter Segmentation

I. INTRODUCTION

C
ardiac catheterization is a Minimally Invasive Surgery

(MIS) that can be employed by surgeons for diagnostic

and therapeutic purposes. In this procedure, a surgeon inserts

a long flexible tube called a catheter into the vascular system

of a patient e.g., from groin, neck, or shoulder under X-

ray fluoroscopy imaging system to acquire information about

heart muscles, heart valves and blood vessels [1]. Utilizing

this procedure, surgeons can investigate the possibility of

cardiac diseases e.g., heart failure, valve diseases and vessel

blockages. They may also employ the catheter as a treatment

for eclectic cardiovascular diseases such as angioplasty, stent

placement and ablation [2]–[4]. Both biplane and monoplane

fluoroscopy can be used for the aforementioned procedures.

Biplane fluoroscopy provides enhanced spatial information by

capturing images from two different angles, making it ideal

for complex interventions like neurointerventions and intricate
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Montréal, Quebec, Canada p_fekri@encs.concordia.ca,

dargahi@encs.concordia.ca
2Mehrdad Zadeh is with the Electrical and Computer Engi-

neering Department, Kettering University, Flint, Michigan, USA
mzadeh@kettering.edu

cardiac ablations. However, monoplane fluoroscopy is more

commonly used due to its cost-effectiveness and simplicity. It

is generally less expensive to acquire and maintain, making

it accessible for many medical facilities, especially those

with budget constraints. For many standard ablation proce-

dures, the detailed spatial information from biplane systems is

not necessary. Monoplane fluoroscopy, when combined with

advanced mapping technologies like 3D electroanatomical

mapping, offers sufficient accuracy and effectiveness while

significantly reducing radiation exposure. These advantages

make monoplane fluoroscopy a practical and efficient choice

for a wide range of medical interventions [5], [6]. This work

specifically focuses on data generated by monoplane vision

systems due to their prevalent use.

Although the interventional catheterization treatment has

shown positive efficacy, this procedure has some imperfections

and safety issues. The hazardous circumstances fall into two

general categories: 1- intangibility, and 2- catheter localization.

As for the first category, regular catheters do not provide

surgeons with haptic feedback or the sense of touch when the

tip of the catheter touches anatomical lumens (e.g., heart or

vessel tissues) [7], [8]. Generally, solutions like skill transfer

and surgical maneuver validation are employed to address

these surgical safety concerns [9], [10]. However, despite

these approaches, the challenges of intangibility and accurate

catheter localization remain significant obstacles in ensuring

the utmost safety during such procedures [11].

Furthermore, inserting and controlling the catheter may

cause unexpected movement due to the high variance shape

of the vascular trees and elastic deformation of both catheter

and blood vessels [12]. Coming to a collision with the vessel’s

wall during the insertion, the catheter may puncture or scratch

the tissue throughout the path which can cause fatal bleeding.

It may also slice off a part of an existing calcification or

clot in the vessel. The blood stream can take the clot to the

brain vessel and develop blood vessel blockages. It reduces

the blood flow in the brain which may lead to stroke. The

above-mentioned complications demand for assisting surgeons

throughout the procedure by detecting and distinguishing the

catheter from other narrow organs such as blood vessels

withing the X-Ray images.

A. Related Work

These two complications have been addressed in the lit-

erature from two separate perspectives.1- force sensing, 2-
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catheter localization and visualization.

Force Estimation: the majority of proposed methods in

the literature attempt to provide the surgeon with the ap-

plied force information at the tip of the catheter. In [13],

a learning-based model was proposed to map the catheter’s

deflection features into their corresponding generated force

along x and y direction. The features are attained by a

separate image processing-based feature extractor. However,

the features represent catheter’s deformations are not robust

to different image variations. As an update on this method

with an aim to resolve its drawback, in [14], a Convolutional

Neural Network (CNN) was proposed to directly solve the

force estimation problem without deploying further feature

extraction phase. In [15], [16], it strives to extract the model

of deflections and their corresponding forces through the

synthetic images of the catheter generated by a simulation. The

aforementioned methods have been designed to operate on a

monoplane fluoroscopy machine (e.g., an experimental setup

that replicates monoplane fluoroscopy functionality), mapping

a single image of the catheter into the force space. These

models predict the force along the x and y directions because

the catheter’s deflection cannot be observed in the z direction

through a 2D image from monoplane fluoroscopy. In [17], a

novel deep learning architecture called the Y-Net was proposed

to calculate the applied forces at the tip of the catheter along

x, y and z directions. This end-to-end network, simultaneously

receives two images of a catheter from two angles and outputs

the forces in 3D. Obviously, this method is intended to be

deployed on a biplane fluoroscopy system, which is not the

focus of this study.

Catheter Segmentation: previously reviewed force esti-

mators process images with cleaned shapes of the catheter,

outputted by a segmentation model. In fact, the images on

which they are trained are RGB images captured from an

experimental setup. The segmentation method removes shad-

ows as well as other objects, such as force sensors, from

the scene. Similarly, in a real operation room, distinguishing

the inserted catheter from lumens in an X-Ray not only aids

surgical visibility and measurements but also prepares images

for force estimators. Catheter segmentation has employed

methods ranging from image processing algorithms and CNN-

based to transformer-based networks [18]. For instance, studies

like [13] have used thresholding to extract the catheter’s distal

shaft shape. Additionally, networks such as the Fully Convo-

lutional Network, SegNet, U-Net, Hr-Net and Mask Region-

based Convolutional Neural Network have been prominent in

medical semantic segmentation and specifically in segmenting

catheters in fluoroscopy images [19]–[28].

Multitask Force Estimation and Catheter Segmentation:

As noted, the issues related to catheter force estimation

and visualization have traditionally been addressed separately.

Typically, a learning-based force estimator relies on segmented

catheter shapes provided by image processing or deep learning

methods. In surgical settings, this often necessitates using

two distinct networks: one for segmenting the catheter in the

images and another for generating inputs for force estimation.

The lack of a unified end-to-end solution that can both seg-

ment the catheter and estimate forces simultaneously increases

computational demands and may impair real-time performance

due to the need to run two large networks concurrently.

Addressing the aforementioned drawback, H-Net was re-

cently proposed as a multi-task architecture for biplane flu-

oroscopy systems to address the combined challenges of

catheter segmentation and 3D force estimation. By process-

ing two X-Ray images from different angles simultaneously

through two parallel encoder-decoder sub-networks, H-Net

enables accurate 3D segmentation and reconstruction. It in-

tegrates segmentation and force estimation in a unified net-

work, predicting forces along the x, y, and z axes while

reducing computational complexity and improving real-time

performance [29].

As an extension built on H-Net, in this work, we pre-

sented a method called FS-Net (Force Segmentation Network)

which simplifies the architecture for use with monoplane

fluoroscopy systems, focusing on 2D force estimation and

single-view catheter segmentation. FS-Net employs a stream-

lined design with a single encoder-decoder structure, featuring

one segmentation head and one force estimation head. This

adaptation eliminates the need for dual-image input and 3D

reconstruction, making FS-Net computationally efficient and

well-suited for standard clinical environments using mono-

plane setups. By targeting 2D force estimation directly and

integrating segmentation, FS-Net retains the benefits of an end-

to-end solution while addressing the practical constraints of

monoplane systems. Consequently, this method is pioneering

in its ability to simultaneously tackle two critical tasks in

interventional catheterization using a single deep learning

architecture, while maintaining state-of-the-art performance in

both force estimation and catheter segmentation.

II. MULTI-MODAL DEEP ENCODER-DECODER NETWORK

As previously mentioned, FS-Net is designed to address two

challenging and crucial problems in interventional catheteriza-

tion procedures using a single architecture: 1) force estimation,

and 2) catheter segmentation. Typically, a deep learning-based

force estimator processes a segmented and clean shape of a

catheter’s distal shaft. It uses a convolutional-based feature

extractor to identify features of deflections. Subsequently,

these extracted features are mapped to the corresponding

applied forces at the tip by solving a regression problem.

Conversely, for catheter segmentation in raw images (such

as X-Rays), it is common to use a semantic segmentation

model. The outputs from these models can not only be fed

into the aforementioned force estimator but also be used for

visualization purposes, thereby enhancing surgeons’ visibility

during procedures.

The FS-Net is a single-input, multi-output network that

takes raw images as input and outputs both the segmented

plane of the catheter and the applied forces in 2D (this work

[30] is an example of a multi-output network). Essentially, the

FS-Net incorporates both a classification head for semantic

segmentation of the catheter and a regression head for force

estimation. As an encoder-decoder network, the encoder acts

as a shared feature extractor for both heads. The bottleneck’s

embedding, derived from the encoder, is fed into both the
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Camera Used in This Work

Fig. 1. This is the designed setup replicating a biplane fluoroscopy system.
In this work, the images captured by the camera circled in yellow are used
to train and test FS-Net.

decoder and the classification head. The decoder then upscales

these features to generate the segmentation map of the catheter.

Simultaneously, the force estimation head transforms the input

features into the 2D force space. However, the bottleneck

might contain features of objects other than the catheter’s

deflection, which, as previous studies suggest, can impact

the accuracy of the prediction [13], [14], [17]. Similar to

H-Net, the classification head receives inputs not only from

the encoder but also from the decoder’s feature maps. The

next section provides a detailed review of the data preparation

process [29].

A. Experimental Setup and Data Compilation

In our study, we utilized RGB images from an experimental

setup as a feasibility study to investigate the simultaneous

estimation of force and segmentation of the catheter [17]. This

approach was necessitated by the impracticality of collecting

real X-Ray images with corresponding force information. The

use of RGB images allowed us to evaluate the potential of

our proposed method under controlled conditions, providing

initial insights and validating the concept before moving to

more complex and clinically relevant imaging modalities.

To this end, as shown in Fig. 1, the data was acquired

using a setup that included two Logitech-C920 cameras, a

bi-directional catheter (Boston Scientific Blazer II XP), and

a force sensor (ATI Mini40). During the experiments, the

catheter was pressed against the surface of the force sensor,

while the cameras recorded the deflections and the sensor

simultaneously measured the applied forces in the x, y and z
directions. This setup aimed to mimic the real-world scenario

of catheterization, in which a surgeon inserts a catheter through

a patient’s blood vessels under the guidance of a biplane

imaging system.

Our proposed network, being a multi-output architecture, is

designed to simultaneously address semantic segmentation and

force estimation challenges. Consequently, each sample in the

compiled dataset includes an unsegmented RGB image of the

catheter’s distal shaft (the last 10cm leading to the tip) from

the top camera, as the input for the FS-Net (as shown in Fig.

1). The outputs or targets for each sample are the segmented

images of the catheter and the measured forces along the x
and y axes. In fact, the goal for the segmentation head is

to remove any objects other than the catheter (e.g., shadows,

3D printed parts, and force sensors). A visualization for the

revised dataset, information on the prepared data as well as

the force statistics will be provided in Section III.

B. Methodology

Recent advances in AI have significantly transformed var-

ious aspects of vascular interventional surgery (VIS), in-

cluding robotic instrument delivery, force perception through

haptic feedback, surgical navigation with multimodal image

fusion, and virtual surgical systems. These developments

leverage deep learning for tasks such as optimizing catheter

manipulation, enhancing tactile sensing, and enabling real-

time surgical guidance through multimodal imaging analysis

[31]. In line with this broader progress, recent deep learning

models have significantly transformed learning-based force

estimation solutions, aiming to advance the development of

sensor-free catheters [13], [14], [17]. Unlike model-based

approaches [32]–[36], these methods model the applied force

at the catheter’s tip w.r.t the shape of the catheter’s deflec-

tions depicted in images. Consequently, a dataset obtained

from realistic or simulated experiments is necessary to train

these models. These models predominantly utilize a CNN

architecture to translate deflection images into feature space.

Once these embeddings are obtained, a regressor is then able

to predict the forces in the output. In order to diminish

the impact of irrelevant objects (e.g., noises or anatomical

lumens) on the precision of the model, the input images to

the aforementioned models need to be the segmented catheters.

Semantic segmentation is a common solution through which

the shape of the catheter is distinguished from the background

[19], [20], [37]–[39]. The output of such models can be used

both visualization purposes and as the input to learning-based

force estimator. As a matter of fact, there are two separate

networks that solve force estimation together.

The FS-Net (an extension of H-Net [29]) is a CNN-based

architecture that solves the problems of force estimation and

catheter shape segmentation using a single network. Fig 2

demonstrates the FS-Net architecture. Inspired by the H-

Net, this network has an encoder-decoder architecture with a

single input and two outputs designed for a monoplane vision

system [29]. It has a classification and a regression head that

segments the catheter and estimates the force based on the

catheter’s deflections respectively. The encoder is an image

feature embedding extractor which is shared between both the

classification head and the decoder. As shown in Fig 2, a raw

image of size I ∈ R(h×w×c) is passed to the encoder as an

input at a time. The encoder down-scales the input through 4

blocks (b). Each block contains two successive 2D convolution

layers with the following equation:

Al
n = Conv2D(f l

n, I
l−1) = f l

n ∗ I l−1 =

(
∑

i

∑

j

f l
n[i, j]× I l−1[h− i, w − j]) + bln

(1)
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Output: X-Force and Y-Force
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Fig. 2. The diagram illustrates the FS-Net’s architecture. The network contains an encoder and a decoder in which the encoder is shared between the
segmentation and force estimation head.

where A is the feature map generated by convolution (”∗”)

between filter f and input I . Each convolution layer l has n
number of filters f l

n ∈ Ri,j with the size of i × j as well as

bias bln ∈ Rn added to the filters. Each convolution layer l
outputs feature maps An ∈ Rh,w of size h×w that goes into

a ReLU activation function as below:

Âl
n = ReLU(Al

n) = max(0, Al
n[h,w]) (2)

However, the output Â for all convolution layers in each block

is still in the size of the inputs as the filter f convolves with

stride s = 1. Furthermore, a copy of feature maps outputted

by the second convolution layer of a block (Âb
copy ∈ Rhb×wb )

is preserved for reinforcing the corresponding decoder layer’s

input. This process will be discussed in more detail in the

decoder part. The final component of each block is a max-

pooling layer with stride s = 2 that comes after the activation

function of the second convolution layer in order to reduce

the features’ dimension and pass them to the next block as

the input.

The output of the fourth block is fed to the bottleneck of

the model in which it applies two 2D convolutions with ReLU

activation functions without changing the size of the input. In

fact, the bottleneck generates inputs for both the regression

head (e.g., force estimation head) and the model’s decoder. A

copy of the the bottleneck feature maps go into the first layer

of the decoder while another copy (Âbtn
n ) is directly fed to the

regression head. Considering that the regression head starts

with a dense layer, it is requisite to feed it with a 1D feature

vector. To this end, a global average pooling is applied to every

feature map spit out by the bottleneck so as to generate a part

of a 1D feature V named vector Vbtn ∈ Rn×1 as follows:

vbtn[n] =
1

h× w

∑

h

∑

w

Âbtn
n [h,w] (3)

The equation above turns each feature map (h × w) into

a single scalar so that n feature maps constitute a vector of

size n (Vbtn) as a part of a input vector V to the regression

head. The other part of V will be completed by combining

the features provided by the decoder. This procedure will be

explained in the decoder section as well.

As previously discussed, the encoder is fed by the raw and

noisy images of the catheter’s deflections, and it strives to

extract high-level, rich features throughout the depth of the

network and pass the maps to the bottleneck. At this point, the

bottleneck generates a part of the regression head Vbtn as well

as the input for the decoder. The goal for the decoder is to up-

scale the feature maps received from bottleneck with the aim

to reconstruct an output matrix in the shape of the input image

to the encoder. Having this objective in mind, Â is the input

to the decoder which is constituted by 4 deconvolution blocks

[40]. Each block has a corresponding block in the encoder

where the output shape of the encoder block equals the input

shape of the corresponding decoder block. Starting from the

bottleneck, the first layer of the first block is a deconvolution

(convolution transpose) layer that up-scales the input to the

shape of the corresponding encoder block input [40]. To be

more precise, in a convolution operation, an output matrix

element (or pixel) is calculated by convolving the filter with

a region of the input. Conversely, in a convolution transpose

operation, this process is reversed.

As explained earlier, the output of the Conv2D transpose of

each decoder’s block of the FS-Net is represented by U b ∈
Rhb×wb in the same size of the corresponding block in the

encoder before applying the max-pooling layer Âb
copy . The

input of the convolutional layer subsequent to the convolution

transpose layer is calculated as follows:

Û b = Âb
copy ⊕ U b (4)

where ⊕ denote the concatenation of Ab and U b along the

channels. Û b is an input of a 2D convolution layers with ReLu

activation followed by an analogues layer. Moreover, a copy

of the second convolution layer’s output (the last layer of a

decoder block) goes into a global average pooling layer (3) in

order to convert feature maps to an embedding of size n in

which each component represents a map (vbdec). In this case,

each block b has two outputs: the first one (Û b) is the input

to the following decoder block b + 1 and the second one is

an embedding vector vbdec that goes into the regression head.

The last decoder block is deemed as the classification head.

It produces n-channel feature maps in the size of the input

image to the encoder. Subsequently, a 1× 1 convolution layer

converts the n channels to a single channel as follows:

σ(outcls) =
1

1 + e−outcls
(5)
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Where outcls ∈ Rh×w×1 is the output of a 1×1 convolution

layer and a Sigmoid activation function σ(outcls) squashes

the value of each component in the output matrix (e.g., each

pixel) between 0 and 1. In other words, the head solves the

problem as a binary classification that distinguishes between

a catheter’s body and other regions. The classification head

optimizes the following binary cross entropy loss function:

Lcls(outcls, tcls) =

−
1

N

N∑

i

ticlslog(σ(outcls)
i)+ (1− ticls)log(1− σ(outicls))

(6)

Regression on the other hand, is fed by 2 component of

the FSNet: the bottleneck (Vbtn) and the decoder (vbdec). In

accordance with the explanation provided, each vbdec is a

vector obtained by a Global Average Pooling. The input of

the regression head is calculated as follows:

�Vreg = �Vbtn ⊕ [‖b1�v
b
dec] (7)

where ‖b1 denotes concatenating the feature embedding of

the decoder’s blocks. It results in a larger vectors that is

constituted by all 4 embeddings of the decoder. Additionally,
�Vbtn is concatenated with the aforementioned vector which

leads to a single vector �Vreg as the input to the regression head

with the aim to estimate the contact forces. The regression

head is composed of three successive dense layer with a relu

activation function (except for the output head which has a

linear activation) as below:

Âl = ReLu(W lxl−1 + bl) (8)

in the first dense layer, weights matrix W l ∈ Rm×n+m and

biases vector bl ∈ Rm×1 where m is the number of units,

n is the length of Vbtn and m is the size of Vdec that make

Vreg together which is a vector of size n + m. It is worth

mentioning that for the first dense layer xl−1 = Vreg.

Since the output of the regression head is a vector of size 2
indicating the predicted force along x and y direction, the last

dense layer e.g., the output layer encompasses 2 units so as

to map the input of the regression head to the 2D force space.

To this end, the head employs a Mean Squared Error (MSE)

loss function to minimize the error of the regression output as

follows:

Lreg(Â
l, treg) =

∑d

k=1(Â
l
k − tkreg)

2

d
(9)

in the loss function above Âl is the predicted forces vector

along x and y from the output layer (d = 2) while t is the

actual force vector. As discussed, the FS-Net has two separate

heads with their own loss functions. In other words, the both

heads contributes to the parameters update process in an end-

to-end manner. The rate of contributions for both losses can

be regulated by their corresponding weight.

Ltotal = β1Lcls + β2Lreg (10)

However, in the FS-Net the weights for the classification

head (segmentation) and the regression head (force estima-

tion) are set equally so that β1 = β2 = 0.5. The loss

TABLE I
THE STATISTICS OF RECORDED FORCES IN THE COMPILED DATASETS.

Force Samples Mean std Min Max

x 19500 0.160038 0.049717 -0.02143 0.26340

y 19500 -0.243149 0.075354 -0.33935 0.00006

weights were determined through empirical trial and error

during preliminary experiments. We observed that using equal

weights for the classification and regression losses led to

more stable training and better convergence. Finally, the Root

Mean Squared Propagation (RMSprop) optimization algorithm

is considered to solve the problem and optimize Ltotal [41].

III. EVALUATION AND DISCUSSION

This section focuses on detailing the data preparation, model

configuration and performance evaluation for FS-Net. Section

A will thoroughly review the process of datasets preparation

for training, testing, and validating. As FS-Net is a multi-

modal network producing outputs in two distinct formats,

this subsection will address the procedures for preparing both

semantic segmentation and force data for training and testing

the model. In subsection A, the configuration of FS-Net

will also be described for both the training and inference

phases. Section B will evaluate the performance of FS-Net

from two different perspectives: catheter segmentation and

force estimation tasks. It will compare the force estimation

component with four state-of-the-art methods in the field,

while benchmarking the segmentation component against three

commonly used semantic segmentation architectures in the

medical imaging domain.

A. Dataset Preparation and Model Configuration

As previously highlighted in Section II-A, in contrast to

the Y-Net and H-Net, this work inputs a single RGB im-

age at a time into the FS-Net [17], [29]. Consequently, the

images compiled, which depict the deflection of the catheter

obtained from the experimental setup, were left unaltered. The

annotations for each image were derived from the output of

thresholding algorithms employed in the Y-Net [17]. In fact,

the other methods available in the benchmark of this study

(e.g., ResNet, ANN-based, and SVR-based) all use segmented

images, whereas FS-Net utilizes these images as annotations

for the segmentation head. Therefore, the dataset comprises

19,500 samples, each including an RGB image (224×224×3),

an annotation (224 × 224 × 1), and the corresponding force

vector of size 2 in the x and y directions.

Table I reports the statistics of forces along x and y. In

the annotation planes, the catheter’s region is marked as 1,

while the rest, representing the background, are marked as 0.

To ensure impartiality, the training, test, and validation sets in

this study are identical to those used in the Y-Net. The dataset,

consisting of 19,500 samples, was reshuffled and divided as

follows: the training set contains 80% of the data, equivalent
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to 15,600 samples, while the remaining 20% was equally

split between the test and validation sets. Furthermore, the

performance of FS-Net was evaluated using the test proposed

in [17] in order to assess the model’s generalization and

robustness when exposed to camera displacement. To simulate

potential displacements of the vision system, both rotation

(randomly sampled between ±20◦) and scaling (randomly

sampled between ±20%) augmentations were applied to all

samples during both training and testing phases (depending on

the configuration, as explained in the following section). Each

image was augmented with one instance of random rotation

and one of random scaling, ensuring consistent variability

across the dataset. This strategy was designed to enhance the

model’s robustness to geometric transformations commonly

encountered in clinical scenarios.

FS-Net processes a single RGB image through its encoder,

featuring four blocks each with two successive convolution

layers using 32 filters of size 3× 3 and a stride of 1 followed

by a ReLU activation. Feature maps are downscaled by a max-

pooling layer with (2× 2) and stride 2 down-scales, while the

bottleneck’s stacked convolution layers increase the feature

map count to 128 with the same kernel size and stride. The

decoder is a mirror image of the encoder with four blocks.

Each block consists of a 2D convolution transpose layer with

32 kernels (3×3) and a stride of 2 followed by two convolution

layers encompassing 32 kernels of size 3 × 3 and a stride of

1. The activation function used in these layers is a ReLu. The

final block, the classification head, employs a single 1×1 filter

and a sigmoid activation to construct the segmentation plane.

Each decoder block produces a 32-length embedding, which,

when combined with �V btn, forms a 256-size vector (�V reg)

for the regression head. This head consists of two dense layers

with 64 and 32 units, respectively, leading to outputs passing

through a ReLu activation and being mapped into a 2D force

space by a two-unit output layer with linear activation. The

following bullet points explain the process in more detail:

• Decoder Block 1: (H×W× 32) → GAP → 32-

dimensional vector

• Decoder Block 2: (H×W× 32) → GAP → 32-

dimensional vector

• Decoder Block 3: (H×W× 32) → GAP → 32-

dimensional vector

• Decoder Block 4: (H×W× 32) → GAP → 32-

dimensional vector

• Bottleneck output (Vbtn): (H×W× 128) → GAP → 128-

dimensional vector

• Concatenated vector (Vreg): [32× 4 + 128] = 256 dimen-

sions

FS-Net was trained on a compiled set with 32 samples per

batch, a learning rate of 1×10−4, and over 80 epochs. Model

performance was monitored with validation in each epoch to

implement early stopping for overfitting prevention.

B. Results and Discussions

As highlighted earlier, receiving an image of the catheter’s

distal shaft, the FS-Net accomplishes 2 major tasks in a

TABLE II
THE TABLE BENCHMARKS THE PERFORMANCE OF THE FS-NET’S FORCE

ESTIMATION HEAD COMPARING WITH THE LITERATURE.

Method FD MSE MAE RMSE R2 R/M

MLP-based [13] 2 4.49e-05 0.0040 - 0.98 -

SVR-based [13] 2 6.27e-05 0.0046 - 0.98 -

ResNet [14], [42] 2 - - 0.025 - 0.033

FS-Net 2 2.55e-05 0.0036 0.0047 0.99 0.036

FS-Net (Aug1) 2 3.54e-05 0.0044 0.0059 0.98 0.045

FS-Net (Aug2) 2 3.80e-05 0.0046 0.006 0.98 0.046

FS-Net (Aug3) 2 3.35e-04 0.014 0.0183 0.90 0.13

single end-to-end architecture: 1- catheter segmentation 2-

force estimation. To this end, it is warranted to analyze the

model’s performance from the two aforementioned perspec-

tives separately. In light of assessing the model from both force

estimation and segmentation head, the trained FS-Net is fed by

the unseen test set in the inference mode. The performance of

the force estimation head is examined by the following metrics

in Table II: Mean Absolute Errors (MAE), Mean Squared

Errors (MSE), Root Mean Squared Errors (RMSE), R2 and

the ratio of RMSE (R) and the average of the maximum (M)

forces in the available directions (R/M). Using the results

obtained from the metrics mentioned above for the FS-Net,

a benchmark was established to compare FS-Net’s quality in

predicting contact force at the tip of the catheter along the x
and y directions outputted by the force estimation head.

To ensure fairness, three 2D learning-based force estimation

methods from the literature were selected, each of which had

been previously trained and evaluated on the same dataset

(same experimental setup) used in this study. The first two

methods listed in the table (e.g., Multi Layer Perceptron

(MLP) and Support Vector Regression-based (SVR) [13]) are

the results of a study by which it maps the extracted features

of a catheter’s distal shaft within an image to their respective

force vector along x and y. The extracted feature are attained

by an image processing-based technique. Comparing these

models with the FS-Net without augmentation (fifth method

in the table), MSE and MAE exhibit markedly lower errors

for the FS-Net.

In contrast to the first and second methods in the benchmark,

the ResNet approach used by Fekri et al. [14] does not

necessitate a separate feature extraction phase, owing to the

inherent characteristics of CNN-based networks. However,

the results reported for both RMSE and R/M indicate a

significantly higher estimation error for the ResNet-based

method. Similar to FS-Net, the predicted Force Dimension

(FD) for the aforementioned methods equals two, as they are

designed to be fed by a single image of the catheter from

a monoplane vision system. Not only does ResNet, but also

the other two methods reviewed in the literature, require a

segmentation method to supply a clear shape of the catheter as

input. In contrast, FS-Net can accurately estimate the force by
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Fig. 3. This histogram illustrates the distribution of errors in the 2D force
estimations made by FS-Net on the test set

processing the real (RGB) non-segmented image of a catheter.

This capability reduces the computational complexity of the

model by eliminating a separate segmentation phase, while the

model still surpasses other state-of-the-art learning-based force

estimation methods. Fig. 3 depicts the distribution of the error

obtained from the deviation between the FS-Net predictions

and the target forces along x and y. As suggested in [17],

given that the desired mean value of the error distribution

is above zero, a mechanism can be implemented to evaluate

the model’s error at various camera positions relative to the

catheter. This aims to identify the optimal position that yields

the minimum prediction error. Furthermore, this issue can also

be addressed by compiling data from a camera rotating around

the catheter. Fig. 4 contains two subplots which demonstrates

the FS-Net’s predictions on 80 samples in the test set along

with their corresponding targets for the force along the two

directions.
The last three rows of Table II examine the impact of

augmentation on the throughput of FS-Net. FS-Net (Aug1)

represents a configuration in which the model was trained on

an augmented training set and also validated on an augmented

test set. This configuration mimics a real situation in the

operating room, featuring an uncontrolled workspace and

turbulence in the vision system in both training phase and

inference engine. The synthetic movement and vibration in

the setup has slightly increased the error of prediction in

comparison with the regular FS-Net. Aug-2 denotes the FS-Net

variant that was fed an augmented training set during training

but was evaluated on a non-augmented test set. Compared

to the previous test, this represents an approximate 4.5%
increase in the MAE. However, the model’s generalization

further decreased in the final configuration, Aug-3, where it

showcases the results of FS-Net trained on a standard training

set and tested on an augmented test set. The results reveal

the capability of FS-Net in handling turbulence in the system

when trained on the augmented training set.

On the other hand, the FS-Net’s segmentation head’s per-

formance was evaluated using accuracy and the mean In-

Fig. 4. The diagram demonstrates the predicted forces in x and y, given 80
RGB images from the test set.

tersection over Union (mIoU) metric. This was compared

with three commonly used semantic segmentation architec-

tures in medical applications: FCN, U-Net, and Hr-Net [19],

[37], [38], [43]–[45]. The first two methods, namely FCN

and U-Net, were re-implemented from scratch. In the FCN

implementation, a VGG-16 backbone was integrated with an

FCN-8s segmentation head. For both networks, the final layer

was designed identically to the FS-Net segmentation head,

focusing on a binary classification problem. These networks

were trained on the compiled training set using a batch size

of 32 and a learning rate of 1× 10−8 across 150 epochs.

However, for the benchmark, an existing implementation of

Hr-Net, already trained on the Cityscapes dataset, was utilized

[46], [47] while FS-Net was trained from scratch on our

dataset without significant prior knowledge. This pre-trained

model was fine-tuned on our training set. Table III presents

the benchmark results on our test sets. As can be seen, all

models have shown reasonable performance, indicating that

the data is not too complex for the models. However, the

mIoU reflects that FS-Net has outperformed FCN and has

a performance roughly similar to U-Net. Hr-Net [38] has

demonstrated superior mIoU compared to FS-Net which could

be attributed to the fact that Hr-Net was already trained on a

large dataset before being fine-tuned on our dataset.

The second column of the table contrasts the models based

on the number of their trainable parameters, expressed in mil-

lions. According to the results, FS-Net features a lightweight

architecture with significantly fewer parameters. This aspect

is crucial when deploying the model on edge devices with

limited resources. To evaluate the efficiency of our model

for real-time applications, we measured its inference latency

and throughput on GPU platform using an input size of

224×224×3. The evaluation was performed over 100 iterations

following 10 warm-up runs to ensure stable performance. On

an NVIDIA GeForce RTX 2080 GPU, the model achieved

an average inference latency of 14.95 ms, corresponding to a

throughput of 66.87 frames per second (FPS). The model’s

computational complexity was estimated at approximately

5.71 GFLOPS, demonstrating a favorable trade-off between

accuracy and efficiency for deployment across diverse hard-

ware settings, including both high-performance and resource-

limited environments. It is also worth mentioning that none
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TABLE III
THE TABLE REPORTS THE PERFORMANCE OF THE FS-NET SEGMENTATION

HEAD COMPARED WITH THE LITERATURE.

Models FD params (m) Acc mIoU

FCN [19] 0 134 99.2 94.0

U-Net [37] 0 34 99.8 95.7

Hr-Net [38] 0 9.636 98.8 96.1

FS-Net 2 0.436 99.8 95.5

FS-Net - Aug1 2 0.436 99.8 95.7

FS-Net - Aug2 2 0.436 99.7 94.5

FS-Net - Aug3 2 0.436 99.5 89.0

of the methods presented in Table III (except for FS-Net)

have a multitask architecture capable of estimating force as

a separate task in addition to segmentation (FD = 0). Fig.

5 displays the segmentation results of all networks evaluated

in the benchmark across five input images. The first two rows

present the original inputs and their corresponding annotations.

As illustrated, the discrepancy in mIoU between FS-Net and

Hr-Net is not visually significant.

Similar to Table II, the last three rows of Table III investigate

the impact of augmentation on the segmentation results for

FS-Net. FS-Net - Aug1 demonstrates improved performance

and generalization compared to FS-Net with no augmentation.

Additionally, the performance of FS-Net trained on augmented

data and tested on non-augmented data (Aug-2) is remarkable.

However, FS-Net - Aug 3 reaches the same conclusion as

the force estimation benchmark: the model trained on regular

data shows lower generalization capability when exposed to

disturbances such as setup vibration and camera turbulence.

Fig. 6 has plotted the loss and accuracy trend of FS-Net across

the training in 80 epochs. The regression loss represents the

prediction precision on both training and validation set while

the accuracy of the segmentation head (cls) has shown in a

separate axis. The diagram has exhibited an smooth training

process with no sign of over-fitting as the evaluation metrics

and losses for both training and validation set caught up with

no fluctuation and deviation. Although the classification head

has reached to a convergence point quickly, due to negligible

scale of the forces, the regression head required more time to

converge properly.

It is worth mentioning that the implementation of FS-Net,

FCN and U-Net as well as training and all validations were

conducted on an Ubuntu 20.04 machine with an NVIDIA

2080 GPU. Also, in this work, we did not apply any domain

adaptation techniques during training or testing. However, do-

main adaptation and generalization methods can play a critical

role in improving model robustness across varying clinical

conditions. Integrating such approaches in future work may

enhance the model’s reliability and applicability in real-world

medical settings [48]. Lastly, incorrect segmentation or force

estimation may lead to clinical risks, such as excessive tissue

Original

FCN

U-Net

HR-Net

FS-Net

Annotations

Fig. 5. The diagram demonstrates 5 samples from the test set and the
prediction results of the methods in Table III.

Fig. 6. The diagram plots the training and validation loss and accuracy.

contact or misinterpretation of catheter position. Although our

current model does not include uncertainty estimation or fail-

ure detection, future work will incorporate techniques, safety

thresholds, and failure case analysis to enhance reliability [10].

IV. CONCLUSIONS

In this work, we introduced an extension of H-Net called

FS-Net, a convolutional encoder-decoder architecture with one
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input and two outputs, designed to simultaneously handle

catheter segmentation and force estimation at the tip. This

state-of-the-art model efficiently estimates forces directly from

uncleaned RGB images and segments the catheter’s shape,

offering a comprehensive solution for both tasks without added

computational complexity. We evaluated FS-Net against three

top force estimators and three leading medical image seg-

mentation models, with FS-Net consistently showing superior

accuracy in all benchmarks. The primary limitation is its

inability to estimate forces along the z axis when processing

dual images. Future work will focus on refining FS-Net’s

architecture to address this issue. Also, we plan to extend

the proposed model to support multiclass segmentation by

incorporating a synthetic X-ray image generator capable of

adding anatomical structures to the scene. This will enable the

segmentation head to not only identify the catheter but also

classify additional anatomical parts, while the force estimation

branch retains focused attention on the catheter to preserve

estimation accuracy.
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