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Abstract—Exploring perceptual dissimilarity spaces of large-
scale Tactons (i.e., Tactile icons) can inform the design of
distinguishable haptic feedback. Yet, collecting pairwise similarity
ratings for entire Tacton sets becomes costly as set size increases,
prompting the need for alternative methods like subset aggrega-
tion. Despite previous efforts, little systematic investigation exists
on efficient subset size or participant number needed to estimate
large-scale Tacton perceptual spaces within a bounded error
threshold. We address this gap by introducing a model that sim-
ulates between-subject variability in similarity perception. The
model explores various distributions under different conditions,
including total Tacton numbers and subset-to-total ratios, to
guide user studies. Guided by these simulations, we evaluated
subset aggregation with three small-scale Tacton sets (12 or 14
patterns) and one large-scale set (48 patterns). Study 1 revealed
that initial simulations underestimated real-world variability. We
refined the model, ran simulations for larger-scale conditions,
and validated them in subsequent studies. The updated model
closely matched reality, showing that designers can use our subset
aggregation method to prototype perceptual spaces for large-scale
Tacton sets. Notably, 4–7 observations were sufficient to achieve
ρ ≥ 0.6, compared to the typical 12 required for generalization.
We discuss the efficacy of subset aggregation and future research
directions.

Index Terms—Perceptual Dissimilarity Space, Tactile Icon,
Distinguishability, Subset Aggregation

I. INTRODUCTION

With the growth in haptic devices over the last decades,
Tactons (i.e., Tactile icons) have helped convey information
in various applications, such as alerting users to events or
system states [1]–[3]. Tactons have also been used with a wide
range of haptic devices, such as wearable devices [4]–[6], VR
controllers [7]–[9], and smartphones [10], [11], enabling the
creation of immersive user interactions and enhancing overall
user experiences.

To ensure that Tactons convey clear meanings to users,
Tactons must be easily distinguishable. Designers can achieve
this goal by creating vibrations through variations in signal
parameters, such as amplitude, carrier frequency [12]–[16], or
abstract parameters like note length and the evenness of vi-
bration signals (i.e., parameter-based design) [17], [18]. Alter-
natively, they may use vibration libraries featuring vibrations
associated with metaphors, such as a heartbeat (i.e., metaphor-
based design) [19]–[22]. After designing an initial set of
Tactons, the designers conduct user studies to identify the

most distinguishable (i.e., dissimilar) Tactons in the set. The
most common approach is pairwise similarity ratings, where
users rate all possible pairs of Tactons in the set. Comple-
mentary approaches include cluster-sorted ratings, where users
group Tactons based on similarity into a predefined number
of groups [23]. After user studies are complete, designers
calculate a dissimilarity matrix and derive the perceptual
dissimilarity space of the Tactons using dimension reduction
algorithms such as multi-dimensional scaling (MDS) [24].
Finally, they select the most distinguishable Tactons from the
set, ensuring that users can easily differentiate the Tactons and
associate them with their corresponding meanings, enabling
effective use in target applications.

Despite the usefulness of these approaches, their scalability
for large-scale Tactons and the validity of their methodologies
present challenges in exploring myriad design parameters
within a perceptual space. The time complexity of pairwise
similarity ratings is O(n2), which limits scalability. Similarly,
cluster-sorted ratings face issues such as skewed distributions
and remain limited in scalability for large-scale Tactons [23].
To address these limitations, several subset aggregation meth-
ods have been proposed, using either cluster-sorted ratings or
probabilistic models to integrate user ratings from subsets of
the entire set [25], [26]. However, these methods lack sufficient
validation against gold-standard data, raising concerns about
their reliability in real-world scenarios. Recent work proposed
a computational model for predicting the perceptual spaces
of Tactons [15], but it requires further validation to ensure
scalability for large-scale Tactons. While supplementing these
models with extensive similarity rating data could enhance
their accuracy, the availability of such data in this field remains
limited and warrants further collection.

To address these gaps, we proposed a new subset aggre-
gation method guided by computational simulation to derive
valid perceptual spaces for large-scale Tacton sets within a
bounded error threshold. Building on prior literature [16], [18],
we introduced a simulation model for between-subject consis-
tency based on standard deviations in user ratings. We then
conducted computational simulations to explore perceptual
dissimilarity spaces by addressing the following questions: (1)
Can the subset aggregation method for pairwise ratings achieve
strong correlations with the ground truth similarity space
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under different Tacton distributions, varying the number of
Tactons, and subset-to-total ratios? (2) How many observations
are needed to achieve a strong correspondence between the
aggregated space and the ground truth space?

We ran three experiments to validate the simulation re-
sults against the real-world user similarity ratings in online
and lab-based experiments. We selected pairwise similarity
ratings to evaluate subsets of the entire Tacton set due to
their methodological fidelity and suitability for crowdsourced
settings [16], [18]. In Study 1, we crowdsourced studies using
three small-scale Tacton sets (12 or 14 patterns) by varying
Tacton design approaches with subset ratios around 40% to
assess the correspondence between simulation results from the
proposed simulation model and real-world aggregated ratings
for subsets. The study revealed that our model underestimated
real-world variability in similarity ratings, likely because it
was built using standard deviations in user ratings for the entire
set. To address this issue, we introduced additional parameters
for the simulation and fitted them to the results of Study 1.
Using the revised simulation, we ran Study 2 and 3 on a large-
scale Tacton set (48 patterns) and tested smaller subset ratios
(10% and 21%). Study 2 established the gold standard for
the large-scale set in a controlled lab setting, while Study
3 tested the proposed subset aggregation methods based on
updated simulations through online studies. The updated sim-
ulations aligned closely with real-world results across subset
ratios, achieving a Spearman’s rank correlation of ρ ≃ 0.7
compared to the gold standard using the number of par-
ticipants predicted by the updated simulations. Furthermore,
the results demonstrated that a strong correspondence could
be achieved with fewer observations: four observations were
sufficient to reach ρ = 0.6, and seven observations yielded
ρ = 0.65–0.7, compared to the typical requirement of 12
observations for generalization. Overall, the proposed subset
aggregation method effectively captured the main structure
of the perceptual space and enabled scalable evaluation of
the large-scale set, though with some acceptable loss of fine
detail. Based on our simulations and study results, we discuss
effective subset aggregation methods using pairwise ratings
and online studies, and outline future research directions. Our
contributions include:

• A method for aggregating pairwise similarity evaluations
of subsets in crowdsourced settings, guided by computa-
tional simulations, which requires fewer observations than
typical approaches and achieves strong correspondence
with the gold standard collected in controlled lab settings
(i.e., ρ ≥ 0.6 and the Alienation Coefficient K ≤ 0.2).

• New pairwise similarity rating data collected from 782
users for 5 Tactons, 250 users for 10 Tactons, and 12
users for 48 Tactons, designed using parameter-based and
metaphor-based approaches, as well as their combina-
tions.

II. RELATED WORK

We review past research on design approaches and similarity
perception for vibrotactile Tactons.

A. Design Approaches for Tactons

Prior haptic research has proposed various vibration param-
eters and constructed vibration libraries to convey clear sen-
sations through Tactons, enabling users to learn and associate
their meanings effectively [2]. Several studies have focused
on sinusoid parameters, or low-level signal parameters, such
as amplitude [13], [27], carrier frequency [12], [13], [28],
envelope frequency [14], [15], and duration [29]. Other studies
explored more complex signal parameters, such as the super-
position of two sinusoids [15], [30], [31]. In addition, prior
research has investigated abstract parameters, or high-level
signal parameters, including rhythmic structures [17], [18],
[32], intervals between vibrations [33], and sound waveforms
or timbre [34], [35]. To evaluate the effectiveness of the
proposed subset aggregation method, we test two Tacton sets
designed using this parameter-based approach in Study 1 and
create 24 Tactons for Studies 2 and 3. These Tactons use a
range of parameters, including amplitude, carrier frequency,
envelope frequency, duration, and rhythmic structure, to ensure
diverse designs.

In addition to varying vibration parameters, designers can
create Tactons by modifying templates from existing vibration
libraries to suit specific applications [36]. Many studies have
proposed vibration libraries by transforming existing libraries
from other sensory modalities into vibration-based libraries
or by exploring the semantic and taxonomy spaces of Tac-
tons (i.e., metaphor-based design) [19]–[22]. The metaphor-
based Tactons typically feature more complex waveforms than
parameter-based Tactons. These include intricate rhythmic
structures in the temporal domain, varying frequency spectra
over time, and diverse durations. We test one metaphor-based
Tacton set in Study 1. Additionally, to enhance the complexity
of vibration design parameters in our large-scale Tacton set
and ensure compatibility with iPhones for online studies,
we create 24 metaphor-based Tactons for Study 2 and 3
by modifying templates from the only open-source vibration
library VibViz [22].

B. Similarity Perception for Tactons

Identifying and selecting distinguishable Tactons requires
a sequential design process: (1) conducting user studies to
collect similarity ratings and construct a dissimilarity matrix,
(2) visualizing the dissimilarity matrix as a perceptual space,
and (3) analyzing a single perceptual space or comparing
multiple perceptual spaces.

One common approach for investigating similarity per-
ception of Tactons involves having users rate the perceived
similarity for all possible pairs of Tactons in a set [13], [15],
[16], [18], [30]. While this method provides high-fidelity rating
data, as users experience all pairs, its time complexity is
O(n2), making it impractical for larger Tacton sets. Cluster-
sorted ratings offer an alternative, where users group percep-
tually similar Tactons into a specific number of groups [23].
Similarity scores are then calculated by summing the weighted
occurrences of Tactons being grouped together, which are used
to derive a dissimilarity matrix. This approach allows designers
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Large-scale Tacton set

Research Questions

(1) Can the subset aggregation method for pairwise ratings achieve
       strong correlations with the ground truth similarity space?

(2) How many observations (i.e., NO) are needed to achieve a strong correspondence
       between the aggregated space and the ground truth space?

Four artificially generated
perceptual spaces

Three perceptual spaces
of small-scale Tactons

from literature

Four artificially generated
perceptual spaces

One perceptual space
of large-scale Tactons

from a user study

Initial model Updated model

Test various cases
(n, ns, rs)

Run three user studies
n = 12 / 14 / 14

ns = 5 / 5 / 5
rs = 42% / 36% / 36%

Test various cases
(n, ns, rs)

Run two user studies
n = 48

ns = 10 / 5
rs = 21% / 10%

Explore RQ (1) Guide RQ (2)

Gold standard:

Subset aggregation:

Explore RQ (1) Guide RQ (2)

Verify RQ (1) Verify RQ (1)

Terminology

* NO: The number of observations in dissimilarity matrix.     * ns: The number of Tactons in a subset.

* n:  The total number of Tactons.            * rs: The subset-to-total ratio (= ns/n).

Study 1

Study 2

Study 3

Simulation:
Refine

Fig. 1: An overview of our subset aggregation method utilizing pairwise similarity ratings in crowdsourced settings, guided by
the proposed simulations.

to investigate perceptual spaces of larger-scale Tactons more
easily than the pairwise rating method. However, the resulting
dissimilarity scores are often skewed toward “totally differ-
ent”, and its time complexity still converges to O(n2).

Due to the scalability challenges and time complexity lim-
itations of these methods, prior research proposed a subset
aggregation method using cluster-sorted ratings to constrain
time complexity to O(n2

s), where ns is the number of Tactons
in a subset [25]. In this study, each participant evaluated 50
Tactons using cluster-sorted ratings from a set of 84 Tactons,
and the experimenters aggregated the dissimilarity matrices
from 17 participants. While this approach improved scalability,
it exhibited a low correlation between the dissimilarity matrix
and the gold standard (ρ = 0.15), despite successfully deriving
a statistically similar perceptual space (K = 0.45). Here,
Spearman’s rank correlation (ρ) [16], [18], [37], [38] and the
Alienation Coefficient (K) [25], [39] are the most commonly
used metrics to compare corresponding dissimilarity matri-
ces or perceptual spaces. Recent work introduced an active
sampling strategy as a complementary method to traditional
approaches [26]. In this method, users cluster Tactons into any
number of groups (at least two), and a probabilistic model is
applied to derive a dissimilarity matrix. By actively presenting
subsets to 129 users, this approach achieved an empirical
time complexity of O(n logn) and enabled the construction of
perceptual spaces for up to 252 Tactons. However, the design
space in this study was limited to rhythmic structures, and its

validity was uncertain due to the absence of comparison with
gold standard data. To overcome these limitations, we propose
a subset aggregation method using pairwise ratings collected
in crowdsourced settings, guided by simulations, to achieve
strong correlation with ground truth and bounded time com-
plexity (O(n2

s)). Our approach produces dissimilarity matrices
and perceptual spaces that exhibit high correspondence with
the gold standard (i.e., ρ ≥ 0.6 and K ≤ 0.2), offering a
scalable and valid solution to collect similarity perception for
large-scale Tacton sets.

Recent studies validated the feasibility of crowdsourcing
pairwise similarity ratings by comparing Spearman’s ρ values
between corresponding dissimilarity matrices [16], [18]. Other
research employed both ρ and the Alienation Coefficient (K)
to compare multiple perceptual spaces [15]. Following these
approaches, we use both metrics to assess the similarity ratings
derived from the proposed subset aggregation method against
those obtained from the traditional evaluations of entire Tacton
sets. Additionally, we crowdsource pairwise similarity rating
studies to take advantage of the parallel processing capabilities
and cost efficiency of online platforms.

III. INITIAL SIMULATION

To explore the potential of our method for aggregating
pairwise similarity ratings of subsets, we propose a model for
simulating between-subject consistency based on the standard
deviations of user ratings (Figure 1). We first artificially
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11.9 (2.9)
[8, 22]

(a) Random points (b) One outlier

26.2 (7.8)
[12, 56]

(c) Two clusters

9.3 (1.3)
[8, 20]

(d) Four clusters

33.7 (16.0)
[9, 91]

Perceptual space
(gold standard

generated artificially)

Simulation
(   , K)

Required number
of participants

(              )

Fig. 2: The four artificially generated perceptual dissimilarity spaces for Tactons, along with Spearman’s ρ and the Alienation
Coefficient K, across 100 simulations when n = 14 and ns = 5 (NO = 12). Gray vertical lines (middle row) represent each
NO. The number of participants (bottom row) indicates the point at which ρ ≥ 0.7, comparing the ground truth dissimilarity
matrix to the aggregated dissimilarity matrix generated by simulations with the proposed models. The Kruskal’s stress values
for all perceptual spaces are below 0.1, suggesting a good fit.

generated four distributions of Tactons in the perceptual space
and tested various the total number of Tactons (n), the number
of Tactons in a subset (ns), and rs (= ns

n ) to evaluate whether
our proposed method—aggregating pairwise similarity ratings
for subsets—works consistently across different distributions
(Figure 2). Next, we selected three small-scale gold standards
from the literature [16], [18], including dissimilarity matrices
and standard deviations of user ratings (Figure 3). Using these
gold standards, we applied our simulation model to further
assess the robustness of our subset aggregation approach on
real-world data.

A. Simulation Model

Human distinguishability for vibrations varies due to indi-
vidual differences in tactile sensitivities, cognitive judgment of
similarity, or environmental noise, leading to variability even
when rating identical Tacton pairs. This variability necessitates
recruiting a sufficient number of participants to ensure a robust
sample size for collecting reliable data. We modeled this
rating variability (R) using a Gaussian distribution with the
maximum standard deviation of user ratings for Tacton pairs
observed in each gold standard across the three sets (e.g.,
Figure 3 (b): σmax = 32.22 on a scale of 0–100), as it
is uncertain which pair will exhibit the maximum standard
deviation for unseen Tacton sets:

R ∼ N(0, σ2
max) (1)

With this noise formulation, we simulated the dissimilarity
ratings by individual users and aggregated them into a dis-
similarity matrix. To simulate user ratings, we applied R to
the dissimilarity matrix derived from the gold standard. The
gold standards were either inversely calculated from distances
between points in artificially generated perceptual dissimilarity
spaces or sourced from prior literature [16], [18]. In pairwise
ratings, designers must determine the number of observations

(NO) to ensure the generalizability of the results. Also, if
designers assign ns Tactons to a user, the user compares
np =

(
ns

2

)
pairs. To assign these comparisons, we used a non-

overlapping sequential sampling method to distribute distinct
sets of np Tacton pairs across participants as much as possible,
using ns Tactons per participant, with pair overlaps introduced
only when necessary to complete the matrix. In the early stages
of aggregation, no pair is rated more than once across users at
each NO level. However, as the simulation proceeds and some
pairs remain unrated, pair overlaps may occur to complete the
matrix. The aggregation continues by incrementally increasing
NO (i.e., NO = 1, 2, 3, . . . ). In later stages, more users may
be required to cover the remaining unrated pairs, even if some
overlap with previously assigned Tactons. The sampled np

scores were normalized to a scale of 100, representing the
maximum perceptual distance for a user. Next, we added R,
sampled from the rating distribution defined in Equation 1. The
resulting values were clipped within the range [0, 100], where
0 indicates total similarity and 100 indicates total dissimilarity.
These noisy ratings were aggregated with those from other
users (each rating a different subset) until the dissimilarity
matrix reached the desired number of observations (NO) per
pair. For our initial simulation, we used NO = 12, as this
is typically sufficient for generalizing the results of similarity
ratings.

B. Test Cases
We tested various Tacton set sizes n (12, 14, 30, 60,

120, and 240) and subset sizes ns (5, 10, ⌈n
4 ⌉, ⌈n

2 ⌉, and
n) using four artificially generated distributions of Tactons
and three gold standards from literature (Figure 1). In other
words, we aimed to explore various subset-to-total ratio cases
(rs = ns

n ). To evaluate these test cases, we used Spearman’s
Rank Correlation (ρ) to compare dissimilarity matrices, and
the Alienation Coefficient (K) to compare perceptual spaces.
Each simulation was repeated 100 times for these comparisons.
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Reference

The number of Tactons
(n)

σ: 0-100 scale
(mean; [min, max])

Vibration parameter

Perceptual space
(gold standard

from literature)

(a) Kwon et al. 2023 {1} (c) Kwon et al. 2023 {2}(b) Abou Chahine et al. 2022

12 14 14

20.67
[7.64, 32.11]

21.56
[6.80, 32.22]

20.05
[8.69, 27.72]

Carrier frequency
Envelope frequency

Duration

Rhythm
Amplitude Complex waveform

Design approach Parameter-based design Parameter-based design Metaphor-based design

Simulation
(   , K)

Required number
of participants (              )
(mean (std); [min, max])

11.8 (2.5)
[7, 22]

23.0 (5.2)
[12, 37]

18.9 (3.2)
[13, 35]

Fig. 3: Details of the three gold standards for Tacton sets from literature used in the initial simulation and Study 1. The sources
of (a) and (c) are [16], while (b) is from [18]. The Kruskal’s stress values for all perceptual spaces are below 0.1, suggesting
a good fit. The simulation results include tests for dissimilarity matrices and perceptual spaces, along with Spearman’s ρ and
the Alienation Coefficient (K), conducted across 100 simulations (NO = 12).

Four Distinct Tacton Distributions Generated Artifi-
cially: Based on typical Tacton distributions reported in
the literature [13], [15], [16], [30] and considering extreme
cases, we generated perceptual spaces with 14, 30, 60, 120,
and 240 points (i.e., n) across four different distributions
of points in the space: (1) random points, (2) one cluster
and one outlier, (3) two clusters, and (4) four clusters. Note
that while we tested additional configurations, such as one
cluster with two outliers or circular layouts, we present only
these four representative distributions, as the simulation results
for the others fell within the range of these four. For each
distribution, we calculated the distances between points to
derive dissimilarity matrices and tested the five ns cases
described above. Since these distributions were artificially
generated and lacked information on rating variability, we used
R ∼ N(0, 32.222) for simulations, where 32.22 corresponds
to the largest σ observed among the three gold standards.

Three Existing Perceptual Spaces of Tacton Sets From
Literature: We selected three Tacton sets that provided dis-
similarity matrices and standard deviations of user ratings
from [16], [18] (Figure 3). The first set consisted of 12 Tactons
designed using a parameter-based approach by varying three
carrier frequencies (80, 150, and 230 Hz), two envelope fre-
quencies (0 and 8 Hz), and two durations (300 and 2000 ms).
The second set with 14 Tactons was also designed using
a parameter-based approach and varied on seven rhythmic

structures and two amplitude levels on iPhones. The last set
consisted of 14 Tactons designed using a metaphor-based
approach, varying across seven metaphors with complex wave-
forms. We used the model (Section III-A) for simulations
corresponding to each gold standard.

C. Simulation Results

Simulations on aggregating pairwise similarity ratings of
subsets revealed their potential for the four selected distribu-
tions of Tactons in perceptual spaces, as well as for the three
existing Tacton sets, which varied in design parameters.

Four Distinct Tacton Distributions Generated Artifi-
cially: We tested various numbers of points (n= 14, 30, 60,
120, and 240 points) for Tactons in perceptual spaces and five
ns values (5, 10, ⌈n

4 ⌉, ⌈n
2 ⌉, and n) for the four distributions.

Figure 2 shows the results for 14 points with ns = 5. Across
all n and ns values, correlations between the distributions and
subset aggregation methods quickly reached ρ = 0.6 with
NO = 2 for all four cases. For ρ = 0.7, the required NO
varied depending on the distributions. Specifically, cases with
one outlier and four clusters required more participants to
achieve ρ ≥ 0.7. Nevertheless, all distributions consistently
achieved ρ ≥ 0.7 well before reaching NO = 6 across
the 100 simulations. The Alienation Coefficient (K) reached
approximately 0.2 at NO = 2 in all cases and maintained a
value below 0.2 during the subsequent stages of the subset

106



aggregation process. A K value below 0.2 indicates that
the two perceptual spaces are statistically similar at a 95%
confidence interval, regardless of the number of points (n) or
dimensions in the perceptual spaces [39].

Three Existing Perceptual Spaces of Tacton Sets From
Literature: We tested the proposed simulation model using
the three dissimilarity matrices while varying three ns values
(Figure 3). Across all ns values, correlations between the dis-
tributions and the subset aggregation methods quickly reached
ρ = 0.6 with NO = 2 for all cases and achieved ρ = 0.7
by approximately NO = 6, even in the worst-case scenario.
The Alienation Coefficient (K) also dropped to around 0.2
with NO = 2 for all cases and remained stable (below 0.2)
throughout the rest of the subset aggregation process.

Brief Discussion: The simulations with the proposed
models for user rating variability allowed for assessing the
potential of aggregating pairwise similarity ratings for sub-
sets of the three gold standards before running user studies.
Additionally, by testing various distributions in perceptual
spaces, we confirmed that our aggregation method consistently
achieves correlations of ρ ≥ 0.7 and generalizes across diverse
distributions and values of n, ns, and rs, regardless of the
variability in user ratings for vibration perception.

IV. STUDY 1

Next, we ran Study 1 with three Tacton sets on the Amazon
Mechanical Turk (mTurk) online study platform to compare
the simulation results with human similarity ratings using the
subset aggregation method in practice.

A. Subset design

We used the same Tacton sets as those employed for the
three gold standards (Section III-B). These sets consisted of
12, 14, and 14 Tactons, respectively. For all sets, we selected
ns = 5, resulting in 10 comparison tasks per user (i.e.,
np = 10). The subset-to-total ratios (rs) for the three sets
were 42%, 36%, and 36%, respectively. Although simulation
results suggested that this study could achieve ρ = 0.7 with 12,
23, and 19 participants (i.e., subsets) on average across 100
simulations, we generated 46, 64, and 65 subsets to obtain
NO = 6, as the minimum number of observations used in
perceptual studies and to achieve ρ ≥ 0.7 based on simula-
tions. While ρ ≥ 0.6 indicates strong correspondence [40],
we set the target ρ at 0.7 to ensure a stronger relationship
between the dissimilarity matrices and better capture the vari-
ability in human perception and the complexity of perceptual
dissimilarity data in real-world contexts [41].

B. Participants

We recruited 175 mTurk workers, all of whom had com-
pleted 10,000 Human Intelligence Tasks (HITs) on the mTurk
platform with a success rate greater than 98%. The partic-
ipants were 20–64 years old (mean age: 36.7 years). The
sample included 141 Americans, 19 Indians, 8 Brazilians,
2 Italians, 2 Sri Lankans, 1 Canadian, 1 Dominican, and
1 British. Participants used 25 different smartphone models,

(a) Kwon et al. 2023 {1}

(b) Abou Chahine et al. 2022

(c) Kwon et al. 2023 {2}

■: Simulation, ■: User study

-- (vertical line) : Predicted # of participants for      ≥ 0.7 by simulation
-- (vertical line) : Actual # of participants for      ≥ 0.7 in User study
-- (horizantal line) :     = 0.7

Sim.
12

(prediction)

0.66

User
study

13
(reality)

0.70
Participant

Sim.
23

(prediction)

0.62

User
study

53
(reality)

0.71

Participant

Sim.
19

(prediction)

0.54

User
study

52
(reality)

0.70

Participant

Fig. 4: Graphs showing how the dissimilarity matrices were
aggregated as the number of participants increased, with ρ
(left) and K (right) plotted for each gold standard. Participant
(Sim.) denotes the number of participants at which ρ ≥ 0.7 is
achieved between the simulated predictions and the gold stan-
dards. Participant (User study) indicates the number of users
at which ρ ≥ 0.7 is achieved between the real dissimilarity
values derived from user studies and the gold standards.

ranging from the iPhone 8 (oldest) to the iPhone 15 Pro
(newest). Note that prior research has shown that similarity
ratings remain consistent across different iPhone models [16],
[18]. Participants completed the rating tasks on the iPhone
application in 3–15 minutes (mean: 4.8 minutes) and received
$3 USD as compensation.

C. Experiment Procedure

We developed an iPhone application consisting of four
sessions: consent, training, main, and feedback. The consent
session provided information on the informed consent and
instructions for the study procedures. After obtaining consent,
the app collected demographics, such as age, biological sex,
nationality, and experience with haptic technology. Following
prior work on haptic crowdsourcing [16], we specifically
instructed participants to remove any phone case, hold the
smartphone in their left hand, and interact with the application
using their right index finger.

In the training session, the application assigned participants
a random subset from one of the 46, 64, or 65 subsets for
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(a) Kwon et al. 2023 {1} (c) Kwon et al. 2023 {2}(b) Abou Chahine et al. 2022

Gold
Standard

Simulation
(rho ≥ 0.7)

[prediction]

User study
(rho ≥ 0.7)
[reality]

Participant = 12, rho = 0.66

Participant = 13, rho = 0.70

Participant = 23, rho = 0.62

Participant = 53, rho = 0.71

Participant = 19, rho = 0.54

Participant = 52, rho = 0.70

Fig. 5: Perceptual spaces of the gold standards (top row) for three Tacton sets and perceptual spaces derived using the subset
aggregation method (middle and bottom rows). The middle row shows perceptual spaces generated using the predicted number
of participants from simulations, where ρ ≥ 0.7 was expected. However, the corresponding ρ values observed in user studies
were 0.66, 0.62, and 0.54, respectively, all falling below 0.7. The bottom row shows those generated using the actual number
of participants required in user studies to achieve ρ ≥ 0.7.

the three Tacton sets, respectively. Participants interacted with
a set of buttons, each corresponding to a randomly assigned
Tacton from their subset, ensuring they experienced all Tactons
in the set. In the main session, participants provided similarity
ratings for all possible Tacton pairs in their assigned set, using
a scale of 0 (totally different) to 100 (totally similar). The ap-
plication presented Tacton pairs in random order and included
one identical Tacton pair as an attention check. During this
session, participants could play the Tactons multiple times but
were unable to modify previous ratings. Finally, the feedback
session collected participants’ comments on the experiment.
We connected our application to the Google Firebase Realtime
Database to store all user responses, including demographics,
ratings, and comments.

D. Study 1 Results

For Tacton sets (a) and (b) in Section III-B (Figure 3),
both the simulations and user studies showed a similar trend,
reaching ρ ≥ 0.6 and K ≤ 0.2 with approximately NO = 2
(Figure 4). In contrast, Tacton set (c) required more par-
ticipants compared to sets (a) and (b) to achieve ρ ≥ 0.6
(approximately NO = 3). Notably, the simulations matched
well with all three user studies for K. However, the number
of participants required to achieve ρ ≥ 0.7 varied across the
Tacton sets (Figure 4). For Tacton set (a), predictions from the
simulation closely matched the user study results, with only

a one-participant difference (12 participants predicted vs. 13
participants observed) to achieve ρ ≥ 0.7. For Tacton sets (b)
and (c), the simulations predicted ρ ≥ 0.7 with 23 and 19
participants, respectively, whereas the user studies required 53
and 52 participants.

The perceptual dissimilarity spaces derived using the subset
aggregation method closely reflected the main trends of the
gold standards (Figure 5). For Tacton Sets (a) and (b), the
main structures of the ground truth perceptual spaces were
captured when ρ ≥ 0.7 was achieved (Figure 5, top vs. bottom
row). Specifically, for Tacton Set (a), the perceptual space was
divided primarily by envelope frequency and duration, forming
four clusters. However, the lowest dominant parameter, carrier
frequency, did not show clear patterns through subset aggre-
gation, unlike the gold standard, which exhibited consistent
patterns across all clusters. For Tacton Set (b), the percep-
tual space revealed that rhythm dominated over amplitude,
although the detailed perceptual distances between rhythms
differed from the gold standard. Additionally, the effects of
amplitude were slightly overestimated compared to the gold
standard. Overall, when ρ ≥ 0.7 was achieved, the subset
aggregation method effectively captured the main structures
of the gold standards’ perceptual spaces, though some fine
details were lost. For complex vibrations in Tacton Set (c), the
perceptual space generated by the subset aggregation method
closely matched the gold standard, despite minor differences in
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detailed distances between Tactons. In all cases, the Alienation
Coefficient (K) remained below 0.2, indicating that the subset
aggregation method consistently produced perceptual spaces
statistically similar to those of the gold standards.

Brief Discussion: For Tacton sets with rs values of 36% or
42% and n values of 12 or 14, the subset aggregation method
quickly converged to a ρ of 0.6 with NO = 2. However, the
number of participants required to achieve ρ ≥ 0.7 varied
depending on the Tacton sets. We conjecture that Set (a),
designed using low-level signal parameters such as carrier
frequency and duration, had relatively clear perceptual effects
for users. This clarity allowed users to rate these Tactons
effectively, even when ratings were divided and aggregated.
In contrast, Sets (b) and (c) used high-level parameters, such
as rhythmic structure and complex waveform, which are more
abstract compared to frequency or duration. This abstraction
likely required more participants to achieve ρ ≥ 0.7. As
a result, although the simulation predicted a similar alien-
ation coefficient (K), the initial simulation underestimated
the variability in individual ratings observed in real-world
settings. This finding suggests the need to improve the initial
simulation model for user rating variability, particularly by
considering the design approaches used in the Tacton sets.
Finally, while aggregating pairwise evaluations for subsets suc-
cessfully identified the main structure of the perceptual spaces,
it did so at the cost of detail. In other words, the method
effectively captured dominant design parameters but showed
reduced sensitivity to parameters with lower perceptual effects
on human perception.

V. UPDATED SIMULATION

To improve the initial simulation that used Equation 1 for
modeling user rating variability (R), we introduce a new model
parameter, w, which adjusts Equation 1 to account for rs
values and the complexity of vibration parameters.

We updated Equation 1 as follows:

R ∼ N(0, (w · σmean)
2
) (2)

Here, we used σmean = 21.65, the mean standard deviation
derived from six reference datasets in [16], [18]. To determine
w, we fitted it such that the mean number of participants
required to achieve ρ ≥ 0.7 in 100 simulations matched the
number of participants observed in Study 1 for each Tacton
set. As in the initial simulation, R was sampled from the
distribution defined in Equation 2 and clipped to the range
[0, 100]. The fitted w values for the three Tacton sets used in
Study 1 were 1.6, 2.5, and 2.6, respectively.

We tested the updated simulation against four artificially
generated perceptual spaces and the three perceptual spaces
from the literature (Section III-B), consistent with the method-
ology described for the initial simulation (Section III-C). The
subset aggregation process for pairwise ratings in the updated
simulation closely matched the aggregation of real ratings
observed in Study 1 (Figure 6). Correlations between the
gold standard and subset aggregation methods quickly reached

(a) Kwon et al. 2023 {1}

(b) Abou Chahine et al. 2022

(c) Kwon et al. 2023 {2}

■: Simulation, ■: User study

-- (vertical line) : Expected # of participants for      ≥ 0.7 
-- (vertical line) : Actual # of participants for      ≥ 0.7 in User study
-- (horizantal line) :     = 0.7

1.6

2.52.5

2.6

Fig. 6: Updated simulation results based on User Study 1
results for the three Tacton sets.

ρ = 0.6 with NO = 2 for all three cases, similar to the
initial simulation model. However, across different numbers
of points in perceptual spaces (14, 30, 60, 120, and 240
points) and ns values (5, 10, ⌈n

4 ⌉, ⌈n
2 ⌉, and n), correlations

required slightly more participants to reach ρ = 0.6, with
NO = 3–4 depending on the distribution. Also, achieving
ρ = 0.7 typically required more participants, with NO values
around 6–7 depending on the distributions. Nonetheless, in all
cases, the proposed method for aggregating pairwise subjective
evaluations consistently reached ρ = 0.7 without exceptions.
Similar to the initial simulation, the Alienation Coefficient
(K) reached approximately 0.2 at NO = 2 in all cases and
remained below 0.2 throughout the subsequent stages of the
subset aggregation process.

Brief Discussion: We interpret Equation 2 such that σmean

represents the inherent similarity rating variability among users
(i.e., the subjective nature of subjective similarity evaluations),
while w serves as a parameter for aggregating subjective
evaluations for subsets of Tactons. At this point, it remains
unclear whether w is influenced by the subset-to-total ratio (rs)
or the complexity of the vibration parameters. For instance, in
Set (a), w = 1.6 with rs = 42% and sinusoidal parameters. In
Set (b), w = 2.5 with rs = 36% and abstract parameters,
while in Set (c), w = 2.6 with rs = 36% and complex
waveforms. To investigate this further, we fix w = 2.6 in Study
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3, where Tactons consist of complex waveforms as vibration
parameters, and test two lower rs values (21% and 10%). If
the updated simulation predictions align closely with the gold
standard results, this would suggest that w is primarily related
to the complexity of the vibration parameters. Conversely, if
the results vary with the two rs values, it would indicate that
w is influenced by rs.

VI. STUDY 2

Study 2 constructs the ground truth dissimilarity space for
48 Tactons using pairwise ratings. This gold standard will be
used in Study 3 to compare against the subset aggregation
methods.

A. Tacton design

We created 48 Tactons using two design approaches
based on existing literature [22], [29]: parameter-based and
metaphor-based approaches (Figure 7). We chose these meth-
ods to enhance the diversity of Tactons within the set. 24
Tactons were designed using the parameter-based approach,
varying on two carrier frequencies (100 Hz and 200 Hz), two
envelope frequencies (0 Hz and 8 Hz), three durations (100 ms,
500 ms, and 2000 ms), and two amplitudes (half and full).
We selected these parameters to ensure compatibility with
iPhones, particularly for the carrier frequency. The vibrations
were programmed using Apple’s Haptic and Audio Pattern
(AHAP) format, a JSON-like file required for defining vibra-
tion patterns on iPhones. The AHAP format supports temporal
envelopes, which only allow positive values, and carrier fre-
quencies between 80 Hz and 230 Hz. The temporal envelopes
for the 24 Tactons were generated using the mathematical
formula E(t) = A · |sin(2πfet)|. In this formula, A denotes
the amplitude, with half and full corresponding to 0.5 and 1 in
the AHAP format, respectively, while fe refers to the envelope
frequency. When fe = 0Hz, the envelope becomes constant,
simplifying the formula to E(t) = A. The carrier frequencies
for all Tactons were kept constant at either 100 Hz or 200 Hz.

The remaining 24 Tactons were from the VibViz library,
which contains metaphor-based Tactons [22]. We chose these
Tactons based on their distribution in the original sensory
space of the library and adjusted them for compatibility with
iPhones. These 24 Tactons featured more complex waveforms
compared to the earlier 24 Tactons, which were designed using
sinusoidal parameters. The duration of the metaphor-based
Tactons ranged from 0.49 to 5.42 seconds. None of the 48
Tactons used in this study overlapped with the Tactons from
Study 1.

B. Participants

We recruited 12 participants (10 women and two men; 19–
28 years old). All participants were right-handed and reported
no impairments in their hands. Rating all possible pairs for
48 Tactons (i.e., 1,128 comparison tasks) required significant
time. To manage this, participants completed 551 comparison
ratings on the first day and 579 ratings on a subsequent day,
with each session including one attention test. Each experiment

(a) Twenty-four vibration Tactons designed using a parameter-based approach
for AHAP format. We named Tactons as “p{index}-{carrier frequency}-
{envelope frequency}-{total duration}-{amplitude}”.

(b) Twenty-four vibration Tactons designed using a metaphor-based approach
for AHAP format. We named Tactons as “m{index}”.

Fig. 7: Two plots displaying the 48 Tactons used in Studies 2
and 3 (Section VI-A). The x-axis represents time (in seconds),
and the y-axis denotes amplitude in the AHAP format. A value
of 1.0 corresponds to the maximum acceleration on iPhones.
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MarkerParameter
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100 (■), 500 (■), 2000 (■)Duration (ms)
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*Metaphor-based Tactons

(a) Gold standard
(Study 2)

(b) Subset aggregation
[ns = 10]

(Study 3-1)

 = 0.65, K = 0.20

(c) Subset aggregation
[ns = 5]

(Study 3-2)

 = 0.67, K = 0.16

Fig. 8: (a) Perceptual space of the gold standard (Study 2). (b)
and (c) Perceptual spaces derived using the subset aggregation
methods (Studies 3-1 and 3-2).

session lasted approximately three hours per day (i.e., total six
hours). Participants received $76 USD as compensation.

C. Experiment Procedure

After obtaining informed consent, we explained the study
details to the participants. The participants completed the
experiment using an iPhone application, similar to the one used
in Study 1 for collecting pairwise similarity ratings, on one of
four types of iPhones. To block any sound from experimental
noises, participants wore noise-canceling headphones playing
white noise. Participants could take breaks at any time during
the study, in addition to a mandatory break (three minutes)
after every 200 comparison tasks. We maintained the room
temperature between 20–23 degrees Celsius.

D. Results

The derived perceptual spaces were primarily divided into
parameter-based and metaphor-based Tactons, with some ex-
ceptions for metaphor-based Tactons that featured relatively

simple waveforms or a continuous envelope with a single pulse
(Figure 8 (a)). Within the cluster of parameter-based Tactons,
two envelope frequencies (0 Hz and 8 Hz) and three durations
(100 ms, 500 ms, and 2000 ms) served as the primary parame-
ters. Notably, the effects of envelope frequency became more
pronounced as duration increased. These two parameters—
envelope frequency and duration—further divided the cluster
of parameter-based Tactons into six sub-clusters. In contrast,
amplitude and carrier frequency were the least dominant
parameters, exhibiting no discernible patterns within the sub-
clusters.

VII. STUDY 3

Study 3 evaluates the potential of the proposed method
for aggregating pairwise similarity evaluations based on the
updated simulations for a large-scale set (n = 48). The study
explores two ns values (5 and 10) to test lower rs values (10%
and 21%) compared to those used in Study 1 (36% and 42%).

A. Subset design

We used the same 48 Tactons from Study 2 for both Study
3-1 and Study 3-2. In Study 3-1, we used ns = 10, resulting in
45 comparison tasks per participant. Each participant experi-
enced 21% of the total 48 Tactons in the set. While achieving
NO = 12 would require 362 participants, we conducted the
study with 250 participants (NO = 6–7), as predicted by
the updated simulations (mean value from 100 simulations)
to achieve ρ ≥ 0.7 with the gold standards. In Study 3-
2, we used ns = 5, resulting in 10 comparison tasks per
participant. Each participant experienced 10% of the total
48 Tactons in the set. Achieving NO = 12 would require
1,547 participants. However, we conducted the study with
607 participants (NO = 5–6), based on predictions from
the updated simulations to achieve ρ ≥ 0.7 with the gold
standards.

B. Participants

For Study 3-1, we recruited 250 mTurk workers, all of
whom had completed 10,000 HITs on the mTurk platform
with a success rate greater than 98%. The participants were
20–78 years old (mean age: 36.6 years). The sample consisted
of 183 Americans, 41 Indians, 13 Brazilians, 8 Canadians,
2 Colombians, 1 Italian, 1 Sri Lankan, and 1 Venezuelan.
Participants used 24 different smartphone models, ranging
from the iPhone 8 (oldest) to the iPhone 15 Pro (newest).
They completed the rating tasks on the iPhone application in
5–54 minutes (mean: 10.5 minutes) and received $5 USD as
compensation.

For Study 3-2, we recruited 607 mTurk workers under the
same requirements as Study 3-1. The participants were 20–
76 years old (mean age: 35.7 years). The sample included
397 Americans, 93 Indians, 41 Brazilians, 28 Canadians, 23
American Samoans, 7 Colombians, 6 Sri Lankans, 6 Venezue-
lans, 2 Italians, 1 Armenian, 1 Australian, 1 Austrian, and
1 Turkish. Participants used 25 different smartphone models,
ranging from the iPhone 8 Plus (oldest) to the iPhone 15
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(a) Study 3-1 (ns = 10, rs = 21%)

(b) Study 3-2 (ns = 5, rs = 10%)

■: Simulation, ■: User study

-- (horizantal line) :     = 0.7

Fig. 9: Simulations of the subset aggregation methods (Studies
3-1 and 3-2).

Pro (newest). They completed the rating tasks on the iPhone
application in 3–76 minutes (mean: 4.2 minutes) and received
$3 USD as compensation.

C. Experiment Procedure

We used the same iPhone application as in Study 1, which
consisted of consent, training, main, and feedback sessions.
One key difference was that Study 3-1 and Study 3-2 were
conducted independently due to differences in compensation,
as participants completed different comparison tasks. In the
training session, Study 3-1 participants experienced 10 Tac-
tons, while Study 3-2 participants experienced 5 Tactons.
Similarly, in the main session, Study 3-1 participants rated the
similarity of 45 pairs, whereas Study 3-2 participants rated 10
pairs.

D. Results

The updated simulation (Section V) closely matched the
aggregation of pairwise ratings for subsets in terms of both ρ
and K (Figure 9). At the point where the simulation predicted
ρ = 0.7, Study 3-1 achieved ρ = 0.65 with around NO = 7,
and Study 3-2 achieved ρ = 0.67 with around NO = 6.
Although there were slight differences, these ρ values (0.65
and 0.67) are sufficient to demonstrate strong correspondence
between the gold standard (Study 2) and the subset aggregation
methods across ns and rs values. Furthermore, the updated
simulations provided predictions that closely aligned with
reality for the Alienation Coefficient (K), achieving K ≤ 0.2
with NO = 2, as predicted by the simulations.

The perceptual spaces derived from Study 3-1 and Study
3-2 also captured the main structure of the perceptual space
of the gold standard (Figure 8). Similar to the gold standard,
their perceptual spaces were primarily divided into parameter-
based and metaphor-based Tactons, with a few exceptions

where metaphor-based Tactons featured simple or continu-
ous waveforms (e.g., m1, m6, m16, and m23). Within the
cluster of parameter-based Tactons, the primary parameters—
envelope frequency and duration—identified in Study 2 were
also observed in Study 3-1 and Study 3-2. Secondary effects
of amplitude and carrier frequency were similarly noted,
aligning with the findings from Study 2. Although some fine
details in the perceptual spaces of metaphor-based Tactons
differed slightly from the gold standard, these differences
do not undermine the effectiveness of the subset aggregation
method in capturing the main structure of the gold standard’s
perceptual space.

VIII. DISCUSSION

In this paper, we proposed a method for aggregating pair-
wise similarity evaluations for subsets of Tactons to construct
robust perceptual spaces for large-scale Tacton sets, compara-
ble to those of the gold standard. To improve the efficiency of
collecting ratings, we utilized an online crowdsourcing plat-
form and developed a simulation model to guide user studies in
advance. The updated simulation model refined through Study
1 guided the construction of perceptual spaces using subset
aggregation methods by providing the number of participants
required to achieve ρ ≥ 0.6 and K ≤ 0.2, representing state-
of-the-art correspondence with the gold standard. Based on
the findings, we discuss the user study results and highlight
implications for future research.

A. Reflection on User Studies

For both rs values of 21% and 10%, our simulation
closely matched the real user similarity ratings, achieving
higher correspondence with the gold standard (ρ = 0.65–0.7
and K ≤ 0.2) compared to previous work (ρ = 0.15,
K = 0.45) [25]. Given that w = 2.6 showed consistent
performance in both Studies 3-1 and 3-2 across various ns and
rs values, the results suggest that the added model parameter
w in the updated simulation represents the complexity of
the vibration parameters. In simpler terms, when the effects
of vibration parameters are perceptually clear, such as with
sinusoidal parameters, the simulation requires a lower mul-
tiplying parameter, around w = 1.6, and fewer participants
to achieve ρ ≥ 0.6. In contrast, for vibrations designed using
abstract parameters or complex waveforms, where interpreting
the effects of vibration parameters demands higher cognitive
effort, the simulation requires a higher w, around 2.6, and
more participants to achieve the same correspondence with the
gold standard. In other words, when Tacton sets were designed
using sinusoidal parameters (i.e., when w = 1.6), an NO
of around 2 is sufficient to achieve ρ ≥ 0.6 (Study 1 (a)).
However, for Tacton sets designed using abstract parameters
or complex waveforms (Study 1 (b) and (c), Studies 3-1 and
3-2), NO = 4 was needed to achieve ρ ≥ 0.6, and at least
NO = 7 was required to achieve ρ = 0.65–0.7 across n and
ns. Overall, our proposed subset aggregation method, which
uses pairwise ratings in crowdsourced settings, successfully
generated perceptual spaces for entire Tacton sets with strong
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correspondence to the ground truth across various n, ns,
rs, and design approaches, guided by NO values from our
simulation model. We attribute the improved performance to
the combination of pairwise ratings from a diverse participant
pool recruited via crowdsourcing and the effective aggregation
of well-distributed subsets using a non-overlapping sequential
sampling method. Together, these factors led to substantially
higher correspondence with the gold standard compared to
prior methods [25].

B. Limitations

While our proposed method for aggregating pairwise sim-
ilarity ratings for subsets of Tactons in crowdsourced envi-
ronments based on simulations achieved state-of-the-art cor-
respondence with the gold standard, it has several limitations.
First, due to the time complexity of pairwise ratings (O(n2)),
we limited the construction of the ground truth perceptual
space to 48 Tactons. Completing pairwise ratings for 48
Tactons required six hours spread over two days. Increasing
the number of Tactons would significantly amplify participant
fatigue and task completion time, making the process imprac-
tical. Thus, we consider 48 Tactons an appropriate upper limit
for generating high-quality gold standard perceptual spaces
using pairwise ratings. Second, while our updated simulations
indicated that the proposed method can work for larger Tacton
sets (e.g., 120 or 240 Tactons), its performance at such scales
remains untested with real users. Future research should focus
on validating the method for these larger sets to determine
its practical limits and ensure scalability. Lastly, our simula-
tion framework relies on the availability of a gold-standard
dissimilarity matrix. Nevertheless, it still provides guidance
on how participant burden can be reduced for unseen Tacton
sets across diverse design approaches while maintaining strong
correspondence with ground-truth perceptual spaces. Future
work could explore gold-standard-free simulations that opti-
mize the required number of participants using w, which we
currently conjecture to represent a complexity indicator for
Tacton design.

C. Implications for Future Work

We outline how our results can support the investigation of
perceptual dissimilarity spaces of Tactons and inform future
research directions.

Designers can prototype the perceptual effects of large-
scale Tactons using our approach. Our findings empirically
established that NO = 4 was sufficient to achieve ρ = 0.6
with the dissimilarity matrix of the gold standard, while
NO = 7 was required to reach ρ = 0.65–0.7. These
results held across various Tacton design approaches and
values of n (12–48), ns (5 and 10), and rs (10%–42%). For
the Alienation Coefficient (K), NO = 2 was sufficient to
construct a statistically similar perceptual space to that of the
gold standard. These results remained stable across various
distributions in perceptual spaces, as demonstrated by the
proposed simulations, as well as across different n, ns, and
rs values. This consistency suggests the potential for early

stopping when exploring the perceptual effects of Tactons,
requiring fewer participants than the conventional sample sizes
(NO = 12) typically needed for generalization, whether using
subset aggregation methods (ns < n) or evaluating the entire
set of Tactons (ns = n).

Our results can inform the development of future com-
putational models to predict similarity perception for vi-
brotactile Tactons. Developing prediction models for Tacton
similarity perception poses significant challenges, particularly
in collecting high-quality rating data for various Tactons
created using diverse design approaches. Pairwise ratings
are especially demanding, requiring O(n2) comparison tasks,
and similarity perception can be influenced by the specific
Tactons included in the set. To address these challenges, a
recent study proposed a computational model inspired by the
neural processes involved in transmitting vibrations from the
skin to the brain [15]. Enhancing such models would benefit
from access to extensive, high-quality similarity datasets,
particularly for training deep learning-based models that rely
on numerous parameters to capture complex relationships.
Our study contributes to this effort by providing similarity
data collected from 782 users for 5 Tactons, 250 users for
10 Tactons, and 12 users for 48 Tactons, designed using
parameter-based and metaphor-based approaches, as well as
their combinations. This dataset serves as a new resource for
training advanced computational models, offering the potential
to improve predictions of similarity perception for vibrotactile
Tactons.

IX. CONCLUSION

Aggregating subjective similarity ratings for subsets of
Tactons offers a valuable opportunity to explore the per-
ceptual space of large-scale Tacton sets. In this study, we
conducted multiple user studies to collect pairwise ratings in
crowdsourced settings, guided by computational simulations
refined with user study data. The results from our studies
and simulations highlight the number of participants needed
to prototype the similarity perception of the gold standard
with high correspondence (ρ = 0.65–0.7 and K ≤ 0.2).
We hope that our findings assist designers in accelerating
the design process for creating distinguishable Tactons for a
variety of applications and inspire the development of future
computational models for predicting similarity perception of
Tactons.
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