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Abstract—We investigated whether surface texture (i.e., stochas-
tic roughness) influences softness perception during direct touch in-
teractions with elastic, textured stimuli. Using a Bayesian adaptive
modeling approach and a 2AFC task, we evaluated participants’
ability to discriminate the softness of stimuli that varied in both
their stochastic surface roughness (Hurst exponent) and material
elasticity. To explore potential interactions between these features,
we conducted two discrimination experiments, testing stimuli from
two distinct ranges of elasticity. All participants performed the
task using pressing. Results show that softness discrimination was
determined primarily by material elasticity, with no discernible
influence of surface features. The findings suggest that humans
effectively isolate elasticity-based information from smaller-scale
surface topography or texture during direct pressing with the
finger.

Index Terms—softness perception, texture and material percep-
tion, cue combination.

I. INTRODUCTION

The haptic perception of softness (or hardness), often listed
among the most salient dimensions of texture and material
perception alongside roughness (or smoothness) [1]–[3], has
been studied extensively. Physically, a material’s softness can
be expressed in terms of its elasticity (the ratio between stress
and strain), stiffness or compliance (the ratio between applied
force and displacement), or indentation hardness (resistance
to indentation) [4]–[6]. The perceived softness of a material
tends to be extracted using pressing or squeezing [7], but is
sometimes available during other interactions, such as tapping
or stroking [8]–[10]. During direct touch interactions, materials
tend to be perceived as soft when their compliance is greater
than the human finger, while stimuli in the stiffer range can
still be perceived as soft with a rigid tool [9].

The importance of cutaneous cues for softness perception,
such as information about the spatial deformation profile, has
been stressed to a great extent [5], [9], [11]. When examining
the relative weight of information for softness (i.e., hardness)
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discrimination, Bergmann Tiest and Kappers [5] showed that
approximately 90% of the information is drawn from surface
deformation cues and 10% from force/displacement cues. Sim-
ilarly, stretching the skin of the fingertip immediately increases
the perceived stiffness of materials [12]. The importance of
local cutaneous cues has become particularly evident in studies
using local anesthesia–without local cutaneous information
from the finger, it is impossible for participants to discriminate
between stimuli with a significant difference in stiffness, using
pressing [11].

Although the haptic perception of softness has been studied
extensively, in controlled experimental contexts, it has most
frequently been investigated in isolation, that is, by manipulat-
ing material features (i.e., elasticity, stiffness, or hardness) to
evaluate their role in softness perception. However, in the real
world, changes in material features can co-occur with changes
in other properties, such as surface features, and examining how
attributes interact and conflict with one another is important
[13]–[15]. In fact, research on softness perception has shown
that object shape can sometimes influence perceived softness–
for example during the pressing of curved surfaces [16] or the
stroking of larger-scale (waved) topographies [17]. Given the
essential role of cutaneous cues such as local skin deformation,
it is conceivable that smaller-scale surface topography might
also impact the perceived softness of objects.

The aim of this study was to investigate whether variations in
smaller-scale surface structure or texture (specifically, stochastic
roughness parametrized by the Hurst exponent) and material
elasticity jointly influence softness perception during direct
haptic explorations. The surface variations in our stimuli
spanned feature changes between 30 and 500 µm, bridging both
micro-, meso-, and macroscale features relative to a fingertip.

To ensure that our findings generalized across a broader
range of elasticities, we conducted two discrimination experi-
ments using naturalistic stimuli that systematically varied in
stochastic roughness and elasticity. While the surface features
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of the stimuli were identical in both experiments, the elastic
properties differed significantly: in Experiment 1, the stimuli
were considerably stiffer than the human finger, whereas in
Experiment 2, the stimuli had elasticity values close to those
of a human finger.

We anticipated that participants would naturally use pressing
as their primary exploratory mode to assess softness, consistent
with prior findings [7]. We hypothesized that when pressing
an elastic, textured stimulus with a finger, the surface texture
might affect the way both the surface itself and the skin deform
locally and, as a consequence, the perceived softness of the
material.

To investigate potential interactions between surface features
and material elasticity in shaping softness perception of our two-
dimensional stimulus space, we used a two-alternative forced-
choice (2AFC) task. However, traditional psychophysical meth-
ods would require exhaustive sampling, making the experiment
overly long. We therefore employed the Adaptive Experimenta-
tion Psychology (AEPsych) framework, which implements
non-parametric Bayesian inference techniques particularly
suited for studying multidimensional perceptual judgments
[18]–[20]. This approach enables efficient exploration of a
continuous stimulus space through adaptive sampling, while
its implementation of Gaussian Process models provides
a convenient approach to modeling perceptual judgments
and accommodating individual differences across participants.
The framework’s non-parametric approach furthermore avoids
strong assumptions about the underlying psychometric function
while constructing a complete model of the perceptual field,
allowing us to examine sensitivity patterns across the full
stimulus space.

II. METHODS

A. Participants

1) Experiment 1: Thirteen healthy adult volunteers (7
women, 6 men; mean age = 27.47, SD = 9.54) participated in
the study. Of these, one participant was left-handed and another
participant was mixed-handed, while the remaining eleven
participants were right-handed, as assessed using the Edinburgh
Handedness Inventory [21]. The mixed-handed participant
reported being right-handed and performed the experiment
with their right index finger.

2) Experiment 2: Five healthy adult volunteers (2 women,
3 men; mean age = 32.2, SD = 2.05) participated in the study.
All participants reported being right-handed and carried out
the experiment with their right hand.

All participants gave their informed consent in writing
prior to the study. The study was approved by the local
ethics committee and carried out in accordance with relevant
guidelines and regulations at Sorbonne Université and according
to the Declaration of Helsinki.

B. Stimuli

1) Experiment 1: To study naturalistic surfaces while main-
taining experimental control, we made use of our previously

established haptic stimulus database in Experiment 1 [22].
This database comprises 49 stimuli that systematically vary
in their material elasticity and stochastic surface roughness in
controlled increments. Surface roughness was thus quantified
using the Hurst exponent, which defines the self-similarity
of surface height variations across multiple scales. A smaller
Hurst exponent results in a slower decay towards small length
scales and thus results in a higher micro-scale roughness (cf.
Fig. 1). Changes in elasticity were achieved through different
mixing ratios of 3D-printing material. This provided us with 49
stochastically rough, self-affine stimuli, systematically varying
in their stochastic surface roughness (Hurst exponent) and
material elasticity.

2) Experiment 2: In addition, for the second experiment,
we created silicone replicas of the original surface textures
using Ecoflex™ 00-30. This was done to achieve elasticities
in the approximate range of the human fingertip itself. We
first 3D-printed rigid molds using a Formlabs Form 3 Printer
with gray resin, following specific anti-inhibition procedures
for PDMS curing [23]. These molds were then used to cast the
silicone samples with different mixing ratios, again resulting
in 49 specimens (7 surfaces × 7 elasticities). After fabrication,
the stimuli were measured with a shore-00 durometer on the
center of the surface. Young’s moduli were then calculated
using Gent’s conversion equation [6].

Fig. 1 shows height plots illustrating the effect of the Hurst
exponent and photos of the final stimuli, while the elasticity
and roughness parameters of both stimulus databases are
summarized in Tables I, and II. All stimuli were coated in
talcum powder before data collection to reduce differences in
adhesion associated with different elasticities.

The most common interaction method to extract softness
information is pressing [7]. The surfaces of our stimuli covered
feature changes between 30 and 500 µm [22], some of which

S1 (H=0.3) S4 (H=0.6) S7 (H=0.9)

Fig. 1: Top: Height matrices illustrating the effect of the Hurst
exponent on the stimuli. Bottom left: Low-elasticity stimuli
taken from [22]. Bottom right: High-elasticity stimuli with the
same surface statistics, but generated using Ecoflex™ 00-30.
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should be clearly discernible by pressing [24], [25]. However,
to ensure this, pilot testing of the stimuli confirmed that varia-
tions in both surface topography and material elasticity were
discernible by pressing alone. From these pilot explorations,
we found that the two stimulus sets did not have equivalent
stimulus to perceptual step changes. For the low-elasticity
stimuli, the space was separated by approximately one just-
noticeable-difference (JND) per stimulus for both dimensions,
while for the soft stimulus space, the JND distance depended
on the dimension, with changes in the Shore values being
slightly more discernible than changes in the Hurst exponent.

TABLE I: Surface parameters of both stimulus databases

Surface Nr. S1 S2 S3 S4 S5 S6 S7
Hurst exponent 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Rq [×10−2 mm] 5.68 5.16 4.79 4.51 4.30 4.14 4.01

TABLE II: Elasticity Parameters of Both Stimulus Databases

Low-elasticity seta

Elasticity Nr. E1 E2 E3 E4 E5 E6 E7
Shore-A value 24 25 26 29 34 44 66

Y. Modulus (MPa) 0.121 0.122 0.128 0.144 0.179 0.264 0.611
High-elasticity setb

Elasticity Nr. E1 E2 E3 E4 E5 E6 E7
Shore-00 value 9 18 25 32 39 43 47

Y. Modulus (MPa) 0.017 0.029 0.041 0.055 0.072 0.084 0.097

a The low-elasticity set was used in Experiment 1.
b The high-elasticity set was used in Experiment 2. Note the differing Shore
scale between measurements of the two stimulus sets.

C. Apparatus

The participants were seated at a desk in front of a computer
screen. During the experiment, they wore noise protection
headphones to ensure that the feedback they received was
purely haptic in nature. The light in the experimental room
was dimmed, so that differences between the stimuli could not
be seen, while the outline of the stimuli could still be made out
for the targeted interactions. Stimuli were placed in front of the
participant’s dominant hand for free exploration with the index
finger. A numpad was provided for responses via keypress on
the side of the non-dominant hand of the participant.

D. Experimental Design and Procedure

Except for the stimulus set and the participants, Experiment 1
and 2 were identical. In the experiments, participants carried out
a 2AFC discrimination task, in which they had to indicate which
one of two stimuli felt softer. Before the experiment proper,
four test trials of pre-chosen stimulus pairs were provided
for participants to get acquainted with the task and stimulus
space. Each trial began with a window appearing on the
participant screen indicating “Which stimulus feels softer?”.
Participants were instructed to explore the stimuli freely, using
any interaction methods they wanted [26], but only using their
dominant index finger. They were asked to explore the left
stimulus first and then move to the right stimulus. They were

also asked not to explore the edges and corners of the stimuli
and to avoid using their fingernails. Finally, they were asked
to be consistent in their exploration method throughout the
experiment once chosen in the test trials. Participants were
encouraged to give quick and intuitive answers. Responses
were given by keypress with the non-dominant hand. After
each trial, the experimenter placed a new pair of stimuli in
front of the participant, after which the task window reappeared
on the participant’s screen, indicating that they could begin
with the next trial.

We used the adaptive experimentation framework AEPsych
[18], [19] to model a single latent function F , which represents
the perceptual scale underlying the comparison of stimuli:

P (”A softer than B”) = Ψ(F (A)− F (B))

Here, F (A) and F (B) represent the latent perceptual values
assigned to stimuli A and B, respectively, and Ψ is a sigmoid
or cumulative Gaussian function.

In contrast to the classical constant-stimulus procedure,
which involves a grid search testing a fixed reference stimulus
and only estimates specific thresholds in the stimulus space,
AEPsych efficiently models the entire 2D-perceptual field. By
using adaptive stimulus selection, AEPsych requires far fewer
trials than exhaustively testing all (here 1225) possible stimulus
comparisons. This is achieved using a Gaussian Process (GP)
model, which serves as a probabilistic surrogate to estimate
the latent perceptual function across the stimulus space. The
GP model captures both the latent perceptual values and the
associated uncertainty, enabling interpolation between tested
points. Within this paradigm, response data from each trial are
used to update the GP model in real-time. The framework
then selects the next stimulus pair for the experiment, to
balance exploration (sampling areas with high uncertainty)
and exploitation (refining regions near decision boundaries),
maximizing the information gained about the perceptual field.
Each trial of the experiment thus entailed a new stimulus pair
with a new combination of surface and elasticity parameters.
A zero-mean GP prior was used, as we did not assume a
specific function shape. Since this is a Bayesian optimization
framework, model comparison metrics like Bayes factors do
not apply.

Each of the two experiments consisted of 50 trials in total,
a fixed number determined during pilot testing to ensure
stable model convergence and to maintain consistency across
participants while keeping the experiment duration reasonable
(≈ 30 minutes). Fig. 2 illustrates the experimental procedure.

III. ANALYSIS

Statistical analyses of the discrimination data were conducted
using Python (Anaconda Navigator, Spyder version 5.4.3) and
using AEPsych [18], [19].

A Gaussian Process (GP) model [27] was fitted to the
discrimination data for all participants. The model used
Houlsby’s [28] pairwise kernel for the Hurst and Shore values
and an index kernel for participants. The model posterior

66



distribution was estimated using variational inference [29], with
hyperparameters fitted using maximum likelihood estimation.
The Hurst and Shore values (cf. the corresponding values in
Tables I–II) were scaled to the [0, 1] range using min-max
normalization. Formally, given the binary nature of the outcome,
we assumed each softness judgment, y, to be drawn from a
Bernoulli distribution with probability Φ(f(u, v, p)), where Φ
is the Gaussian Cumulative Distribution Function (CDF), and
f(u, v, p) is a latent function over the model inputs: the left
and right stimuli (given by their Hurst and Shore values) and
the participant index.

y|f, u, v, p ∼ Bernoulli(Φ(f(u, v, p))) (1)

We imposed a Gaussian Process (GP) prior on f . As is
typical in GP regression, we used a constant mean function of
zero, and we used a covariance function that is the product of
two different covariance functions, kstim and kpart.

f ∼ GP (0, kstim · kpart) (2)

The function kstim models the covariance between pairs of
stimuli. Given pairs [a, b] and [c, d], the covariance is given by

kstim([a, b], [c, d]) = k(a, c) + k(b, d)− k(b, c)− k(a, d) (3)

where k is the Matérn 5/2 kernel (the derivation for this
expression is provided by Houlsby et al. [28]). The function
kpart is an index kernel, which models the covariance across
participants.

Model fits were subsequently assessed using the area under
the receiver operating characteristic curve (ROC AUC) [30]. To
estimate the distribution of predictions, 10,000 samples were
drawn and the ROC AUC was calculated.

IV. RESULTS

Free exploration was permitted, but participants were in-
structed to remain consistent in their chosen strategy throughout
the experiment. Observations by the experimenters confirmed

Which one feels softer?

Left sample Right sample

S2, E5 S6, E3

Fig. 2: Experimental procedure. Here with the example of
stimulus S2,E5 and S6,E3 (cf. stimulus parameters in Tables I
and II).

that all participants naturally adopted and consistently used a
pressing motion for the softness discrimination task in both
experiments. No stroking or lateral movements were observed.
The average trial duration (interaction with both stimuli) was
13.6 seconds in the first experiment and 8.3 seconds in the
second, possibly reflecting that the discrimination of the high-
elasticity stimulus set was somewhat easier.

A. Experiment 1 (Low-Elasticity Set)

Fig. 3 shows a histogram of the receiver operating charac-
teristic curve (ROC AUC) scores for the model of Experiment
1.

The 99% highest-density interval (HDI) is the shortest
interval in which 99% of the posterior mass lies, meaning
that the ”true” ROC AUC lies within the bounds of the HDI
with 99% certainty. As can be seen in Fig. 3, the HDI lies
above 92%, which is generally considered to be an ”excellent”
model fit [30].

We then modeled each participant individually in Experiment
1 and computed predicted response probabilities across a dense
grid of the stimulus space defined by the Hurst and Shore values.
Due to space constraints, only the group-level mean plot is
shown in Fig. 4. However, the individual prediction surfaces
were highly similar across participants, with only minor
between-subject variability, justifying the mean visualization.

Fig. 4 illustrates the probability of any stimulus within our
stimulus space being identified as softer compared to a central
reference point for each participant. The black iso-contour
lines symbolize the corresponding 25%, 30%, 40%, 50%, 60%,
75% 84%, and 96% probability lines, similar to just-noticeable-
differences (JNDs). The overall quantity of and the spacing
between the iso-contours in the space provide a picture of how
precisely participants were capable of differentiating within the
stimulus space. In Fig. 4, it is clearly evident that the softness
discrimination was primarily determined by the Shore value,
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Fig. 3: The area under the receiver operating characteristic
curve (ROC AUC) of the model for Experiment 1 carried
out using the low-elasticity stimulus set. The mean of the
distribution, as well as the limits of the 99% highest-density
interval (HDI), are labeled.
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Fig. 4: Results for the low-elasticity set. Mean probability plot
of model predictions for the 13 participants as a function of
Hurst and Shore values to a central reference point (median
Hurst and Shore value). Background color indicates the
probability of a stimulus being chosen as softer compared to a
stimulus with the medium Hurst and Shore values. The black
iso-contour lines symbolize the 25%, 30%, 40%, 50%, 60%,
75%, 84%, and 96% probability lines. Individual participants
showed similar perceptual fields, with only smaller between-
subject variations, justifying the presentation of the mean
visualization here.

with little influence of the Hurst exponent, since changes in
probability are mainly observable across the vertical axis.

B. Experiment 2 (High-Elasticity Set)

The same analysis was repeated for the data from Exper-
iment 2. Fig. 5 shows a histogram of the receiver operating
characteristic curve (ROC AUC) scores for Experiment 2. As
can be seen in Fig. 5, the HDI lies above 96.5%, indicating
an ”excellent” model fit [30]. As for Experiment 1, we then
created model predictions for each participant. Because the
five participants showed highly similar perceptual fields, we
here only show the mean probability plot (cf. Fig. 6).

The mean psychometric field (Fig. 6) again demonstrates
that the Shore value was the primary determinant of softness
discrimination. Overall, iso-contours were spaced more closely
to one another, compared to the low-elasticity stimulus set
(Figure 4), indicating a slightly higher discriminability of the
stimulus space.

C. Discussion

We conducted two experiments to explore the interaction
between surface texture and material elasticity on softness
perception. Contrary to our hypothesis, the results did not
yield evidence of a notable influence of changes in surface
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Fig. 5: The area under the receiver operating characteristic
curve (ROC AUC) of the model for Experiment 2 carried
out using the high-elasticity stimulus set. The mean of the
distribution, as well as the limits of the 99% highest-density
interval (HDI), are labeled.
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Fig. 6: Results for the high-elasticity set. Mean probability
plot of softness model predictions across all participants as a
function of Hurst and Shore values to a central reference point
(median Hurst and Shore value). Background color indicates
the probability of a stimulus being chosen as softer compared to
a stimulus with the medium Hurst and Shore values. The black
iso-contour lines symbolize the corresponding 25%, 30%, 40%,
50%, 60%, 75%, 84%, and 96% probability lines. Individual
participants showed highly similar perceptual fields, justifying
the presentation of the mean visualization.

roughness (Hurst exponent) on the perceived softness of either
stimulus set. Perceptual judgments were largely dominated by
the elasticity of the stimuli. Our results therefore suggest that
changes in surface texture (as operationalized here, covering
feature changes between 30 and 500 µm) do not affect the
softness perception of elastic surfaces within the two ranges
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of elasticity tested.
This finding is interesting for several reasons. It is known

that the perceived softness of a material is largely defined by
local skin deformation and displacement [11], [31]–[33]. In the
present study, changes in the topography of the stimuli through
the Hurst exponent will likely have modified local skin defor-
mation cues during the bare-finger interactions. One might thus
have expected differing surface features to provide differential
information about the material’s elasticity. Specifically, local
deformation of surface features (textons) upon pressing could
theoretically have provided additional cues about the material’s
elasticity compared to a flat surface of the same material
properties, as these features would deform differently based
on the underlying material compliance. Furthermore, a larger
evolution in the overall contact surface will likely have taken
place from initial contact to maximal force applied on a rougher
(smaller Hurst exponent) compared to a smoother or more flat
(larger Hurst exponent) surface of the same elasticity. One could
therefore have reasoned that, within a given range of elasticity,
finer surface features (approaching a flat surface) might bias
toward a harder percept, since the lack of prominent surface
features (larger Hurst exponent) might provide less information
about the deformability of the surface. However, this is not
what we found. Our findings therefore suggest that participants
were able to dissociate the perceived differences in surface
features from their final softness judgments during pressing;
thus avoiding a confounding influence of surface roughness on
softness discrimination. While talcum powder was applied to
minimize adhesion differences across all samples, we cannot
fully exclude the possibility that subtle differences in surface
adhesion may have covaried with elasticity.

This ability to dissociate surface features from elasticity
is particularly noteworthy given that other types of surface
geometry are known to influence softness perception. For
instance, previous research has shown that the shape of a
surface can affect its perceived compliance [16], [34], such
that interactions with a convex surface yield a perceptual
outcome equivalent to a harder stimulus whereas interactions
with a concave surface yield a percept equivalent to a softer
stimulus [16]. It is furthermore known that the evolution of the
gross contact area provides information about the softness of
a material [35] as well as the finger displacement relative to a
surface [36], which in some instances can lead to confounding
percepts of compliance and displacement [33]. Our findings
therefore raise interesting questions about the spatial scale at
which surface features transition from being ”texture” to being
processed as ”shape” in the context of softness perception.
Future research should systematically investigate this transition
point by examining surfaces with progressively larger feature
sizes or more pronounced textural elements.

Although Experiment 2 included only five participants, the
perceptual fields estimated from their responses were remark-
ably consistent, suggesting that the observed pattern—namely,
minimal influence of surface texture on softness discrimina-
tion—was not due to outlier behavior. Nevertheless, future work
should confirm these findings in a larger sample. A further

limitation of the study concerns the fabrication of the Ecoflex
stimuli, which were less strictly controlled than the 3D-printed
textures used in prior work. While the stimuli were visually
inspected for potential air-bubbles or other inconsistencies, no
profilometry or other surface measurements were carried out.

A final observation of the present study concerns participants’
choice of exploration mode for the softness discrimination.
Okamoto and Visell [10] have highlighted humans’ ability to
extract weak softness information from vibratory cues, and
a line of further studies has demonstrated that vibrotactile
information can affect the perceived object softness in certain
contexts [37]–[39]. This especially becomes relevant during
dynamic explorations of surfaces such as tapping or stroking
of textured surfaces. It has, for instance, been shown that
a lower surface friction leads to skin or skin-like materials
feeling softer during stroking but not pressing [40]. However,
participants consistently used pressing rather than stroking,
verifying this as a preferred exploration strategy for extracting
softness information [7], even when relevant cues might have
been accessible during other exploration modes. The present
research therefore makes no claims about the potential influence
of surface features on softness perception during instructed
dynamic explorations like sliding. Future research will have to
investigate this, although the present study once more verifies
the power of preferred exploration procedures to extract certain
material qualities [7].

In summary, our study demonstrates that humans can
effectively dissociate surface features from material elasticity
during softness perception, with elasticity dominating the
perceptual judgment during pressing interactions, regardless
of concurrent variations in surface topography. This finding
suggests that the human haptic system can isolate material
properties even amid potentially conflicting surface cues.
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