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Abstract—Like human skin, robotic electronic skin (e-skin)
must protect the body from external threats and remain sensitive
to the environment’s characteristics while interacting with it.
These conflicting requirements make e-skin design challenging.
This work presents a modular, easy-to-replicate, and scalable
bioinspired e-skin that uses layered silicone encapsulation with
force-sensing arrays and accelerometers. This design enables
control over the mechanical properties and sensor density,
improving normal and shear force sensing and high-frequency
vibration detection. The design allows us to seamlessly explore the
mechanical properties of e-skin for sensing and adjust them for
specific applications. We have characterized and systematically
evaluated this e-skin using objects with controlled mechanical
properties, demonstrating its ability to differentiate between tex-
ture, shape, and stiffness variations. Our e-skin design is versatile
and can be adapted to various applications, including robotics,
prosthetics, and virtual reality. The e-skin design files, code and
documentation are available online, ensuring reproducibility and
facilitating ongoing improvements.

Index Terms—Electronic skin, tactile sensing, dexterous robotic
manipulation, bioinspired functionalities, scalable fabrication

I. INTRODUCTION

Designing effective haptic sensing systems is challeng-

ing due to the complexity of physical contact. The sense

of touch can involve various sensations such as pressure,

vibrations, temperature, chemical properties, etc. Capturing

and interpreting these diverse signals requires advanced sen-

sor technologies and processing algorithms [1]. In addition,

sensors must be durable for repeated contact and sensitive

enough to detect subtle changes. Compliance is also crucial

to interact with objects with complex geometries and various

soft and rough surfaces, requiring the sensing system to be

flexible. Furthermore, integrating data from multiple sensors

for high-fidelity touch sensing introduces added complexity,

This work was supported by the EC H2020 grants INTUITIVE (ITN
861166) and PH-CODING (FETOPEN 829186).

necessitating innovative electronic solutions and sophisticated

algorithms for multi-modal data integration.

While extensive research has been devoted to developing

artificial haptic sensors [2], much of this effort has focused

on interaction with rigid objects. However, many real-world

interactions involve soft and deformable objects, which present

additional challenges, such as changes in shape, fragility, etc.

Addressing these challenges requires sensors with specific

mechanical and dynamic properties to effectively capture the

force, vibrations, and other relevant information that arise

during interaction [3].

Recent studies have explored bioinspired sensors replicating

human skin’s flexibility and sensory properties to address

the challenges. However, their reliance on complex mecha-

nisms [4], advanced materials [5], and intricate fabrication

techniques [6] limits their accessibility and practicality for

a systematic investigation of haptic interactions across di-

verse materials and sensing modalities. To complement the

theoretical study of haptic interaction, more straightforward,

adaptable, and robust artificial haptic sensors are required, fa-

cilitating the study of the mechanical properties of the sensor,

optimal spatial and temporal resolution, and the importance

of matching sensor properties to environmental conditions and

tasks [7].

This work presents a multi-layered, modular, skin sensor

based on simple, off-the-shelf and easy-to-fabricate compo-

nents with certain functionalities inspired by biological skin

(see Fig.1). The sensor platform is designed to investigate

interactions with a wide range of rigid and soft materials,

enabling the identification of interaction properties such as

stiffness, texture, and dynamic response. Its modular layer

design offers a practical sensing setup to study and model

the role of the skin’s mechanical properties on haptic sensing

in controlled or real-world environments. All design files,

code, and documentation are available online, ensuring repro-
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Fig. 1: Human skin structure and bioinspired functions for the e-skin design. A diagram of a simplified model of the human skin
with epidermis, dermis, and hypodermis layers is shown on the left. The middle column identifies the shared functions of the human
skin and e-skin. A simplified diagram of the e-skin with the sensorized layers embedded in silicone is shown on the right.

ducibility and facilitating ongoing improvements. A step-by-

step tutorial is provided at https://aightech.github.io/e-skin/.

To illustrate the versatility of the system, we implemented

and tested two sensing modalities: force and vibrations. The

force-sensing module measures slow-changing normal and

shear forces, while the vibration-sensing module captures

high-frequency vibrations during interactions. This modular

approach enabled rapid testing of sensor configurations and

materials, providing insight into their effects on haptic percep-

tion. Using a robotic arm, we systematically evaluated sensor

modalities, spatial and temporal resolution, and material types

of the layers by interacting with diverse, curated and designed

objects of varying stiffness and surface shapes, analyzing their

impact on haptic perception.

II. DESIGN AND FABRICATION

We developed an e-skin incorporating distributed load and

vibration sensing capabilities to investigate the role of mechan-

ical properties during haptic interactions. A key motivation for

this work was the need for a simple and modular hardware

platform to test a wide range of mechanical and sensing config-

urations, yet sophisticated enough to capture the complexity of

haptic interaction and evaluate the impact of each combination

of materials and sensors.

A. E-skin structure

To ensure modularity and scalability, the e-skin was de-

signed using a layered approach inspired by the structure

of human skin (Fig.1). Each layer is interchangeable and

consists of specific materials and sensors tailored to control the

mechanical properties and sensing capabilities, enabling adapt-

ability to various applications. This modular design facilitates

the replacement or modification of individual components,

allowing the e-skin to be customized for different tasks or

environments.

For the compliant layers, Smooth-On Ecoflex (Shore 00-

31) and Dragonskin (Shore 30A) addition-cure silicone rubber

were selected due to their flexibility, ease of handling and bio-

compatibility. The silicone layers were cast using 3D-printed

moulds to achieve precise shapes and dimensions. Preliminary

experiments were conducted to determine the optimal thick-

ness and hardness of the silicone. It was observed that overly

thick or compliant layers excessively filtered haptic signals,

reducing sharpness and detail. Conversely, thin or overly rigid

layers compromised the e-skin’s ability to conform to com-

plex surfaces. A balance was achieved, whereby the silicone

provided sufficient compliance for effective deformation while

maintaining enough rigidity for accurate signal capture. The

experiment described in subsequent sections evaluates how

variations in the different aspects of silicone layers influence

the perception of object-skin interaction.

The final design of the e-skin comprises three sensorized

layers embedded within compliant silicone, as shown in

Fig.2.b. The outermost layer incorporates accelerometers to

measure high-frequency vibrations, with functionality sim-

ilar to rapidly adapting mechanoreceptors in human skin.

Additionally, two layers of force-sensing resistors (FSRs)

capture normal forces and deformations. While FSRs are

inherently suited for detecting normal forces, they cannot

directly sense shear forces. To address this issue, a compliant

silicone interlayer is placed between the two FSR layers. Small

shear displacements between these layers produce differential

normal force, enabling shear force sensing. This design yields

rich haptic sensing capabilities by capturing multi-modal data

from the same contact area.

To address potential noise and interference in the FSR and

accelerometer sensors, the e-skin leverages a multi-nodal con-

figuration inspired by the redundancy of human mechanore-

ceptors. Each sensor layer consists of arrays of sensing units,

providing overlapping coverage. This redundancy can improve

the reliability of the tactile sensing, robustness to errors,

and accuracy of the measurement. Furthermore, the layered

structure of the e-skin introduces a degree of fault tolerance:

the failure of one sensing unit does not compromise the

system’s overall functionality, ensuring robust performance
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Fig. 2: Our implementation of modular e-skin with the sensory layers and components displayed in (b). The FSR array electronic
diagram is shown in (a), and the accelerometer array electronic diagram in (c).

even under demanding conditions.

The accelerometer array layer was positioned near the top

of the e-skin, just below a thin silicone layer, to minimize

damping from affecting the high-frequency vibrations sensing.

Accelerometers are ideal for this purpose, as they are highly

sensitive to rapid changes in acceleration and can detect subtle

vibrations. A 4x4 array of 3-axis LIS3DH accelerometers

(spaced 15mm appart) was used to capture these vibrations.

The LIS3DH sensors (costing around 1 USD per unit) are

affordable while having a suitable performance for our ap-

plication (3×3 mm2, 0.98 mg/LSB, ±16g). They offer three

analog inputs, allowing future integration of additional sensing

modalities such as temperature or humidity sensors.

To measure static or slowly varying normal and shear forces,

the e-skin includes two layers of FSR arrays. The resolution of

the FSR arrays determines the e-skin’s ability to capture fine

details and subtle changes in the contact surface. We used

16×16 FSR arrays from Roxifsr with sensing cells of 2×2

mm2 and a 1 mm pitch.

The implemented e-skin measures approximately 120 mm

× 120 mm × 25 mm. While suitable for applications involving

robotic palms or large manipulators, this dimension may pose

challenges for robotic fingertips. Miniaturisation could be

achieved by employing custom smaller FSR units, denser

flexible PCBs, and thinner silicone encapsulation, which would

enhance its applicability in finer robotic manipulation tasks.

B. Electronic design

The electronic design necessary to capture and process

tactile signals from e-skin sensors is a critical yet often

overlooked aspect in the literature. While reading the out-

puts from a small number of sensors can be achieved using

bulky laboratory equipment, scaling up to a larger number

of sensors introduces significant challenges. These include

managing wiring complexity, ensuring adequate data trans-

fer rates, minimizing power consumption, and handling the

increased data processing demands. These factors are crucial

when designing an acquisition system capable of supporting

e-skins with larger sensing areas or higher sensor densities.

In this section, we present the developed electronic design for

efficiently capturing and processing tactile signals from each

sensor layer of our e-skin.

1) Accelerometer array: Capturing high-frequency vibra-

tions from multiple sensors requires fast data transfer to

a processing unit. While most accelerometers support both

I2C and SPI protocols, the two-wire protocol I2C introduces

significant latency in high-frequency data acquisition. It sup-

ports only a limited number of identical sensors per bus. SPI

is faster and better suited for this purpose but requires a

dedicated chip select line for each sensor and its three shared

data lines, resulting in N+3 wires for N sensors. To reduce

the wiring complexity, a demultiplexer was used to select

each accelerometer via a four-bit address bus, decreasing the

required communication lines to six for 16 sensors. The array’s

electronic design is shown in Fig. 2c.

When devices share a common bus, a critical challenge

is to ensure that only the selected device responds to the

communication and that other devices do not interfere. In our

case, the LIS3DH, like many other accelerometers, can operate

in both SPI and I2C modes, with the SPI chip select pin also

determining the protocol selection. When multiple accelerom-

eters are connected, an unselected SPI device reverts to I2C

mode, causing any package resembling an I2C communication

to be interpreted by all unselected accelerometers, leading to

bus conflicts. This issue is not documented in the LIS3DH

datasheet and was discovered during the development of the

e-skin. To address this issue, we used an OR gate for each

accelerometer to pull up the input line, effectively disabling

I2C mode for unselected accelerometers.

Finally, to prevent vibration absorption by the PCB, each

accelerometer was mounted on a small 4×4 mm2 platform
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(a) Shear and Normal force estimation. (b) Comparison of the force estimation accuracy.

Fig. 3: Force estimation using the FSR arrays. (a) The plots show the shear and normal force estimation using the two FSR array
layers with Ecoflex 00-31 silicone skin. (b) The plots compare the force estimation accuracy using different: skin types, number of
FSR layers, and number of sample per sequence.

linked to the main frame via a 3 mm wide, 0.2 mm thick

flexible PCB bridge. This design allows the accelerometers

to move freely, capturing subtle vibrations with minimal

interference from the PCB structure.

2) FSR array: To avoid having to read each of the 256

sensors individually, the sensor array comprises 16 parallel

conductive electrodes “rows” on one side of a resistive foam

layer, while 16 perpendicular electrodes “columns” on the op-

posite side form a grid of intersecting nodes. Each intersection

of a row and column functions as an independent sensing unit,

resulting in a matrix of 256 discrete pressure-sensing points

readable via only 32 wires. To scan the array efficiently, each

row electrode is connected to a demultiplexer that sequentially

applies voltage to each row, one at a time. On the column side,

each of the 16 columns is connected to the ground through

individual resistors, creating a network of voltage dividers

with the resistive foam. When a force is applied to a sensing

unit, the foam’s resistance changes at that location, altering

the voltage readout at the corresponding row and column. A

parallel 16-channel Analog-to-Digital Converter (ADC) simul-

taneously measures the resulting voltages across all columns,

effectively capturing a complete set of 256 reading points by

activating each row. This process is illustrated in Fig.2.a. To

prevent curent path into several combination of FSR cell, we

ensure the resistors used to read the voltage at the output of the

FSR array remain largely inferior to the FSR cells resistance

values.

3) Data acquisition and processing: A Teensy 4.1 micro-

controller was used to acquire and synchronize data. The

600 MHz clock speed makes it possible to read the 16 ac-

celerometer 3-axis value and the 2×256 FSR values at a

rate of 700 Hz. Additionally, Teensy 4.1 supports high-speed

USB (480 Mbit/s), making it possible to stream the data to a

computer in real-time.

III. EXPERIMENT

To evaluate and collect data from the e-skin, it was mounted

on the end-effector of a Kinova robotic arm (Fig. 4a). A 6-axis

force/torque sensor (ATI Nano 17) was attached between the

e-skin and the robotic arm to provide a ground truth of the

loads applied to the e-skin. The robotic arm was programmed

to move the e-skin in predefined trajectories to interact with

tested objects (Fig. 4b). A single computer controlled the

robotic arm and collected the data from the e-skin and the

force/torque sensor to ensure data synchronization.

A. Experimental objects

To evaluate the e-skin’s performance systematically, we

designed a set of “wave objects” with controlled mechanical

properties (see Fig. 4c). These objects were used to generate

haptic data under different controlled conditions, providing

insight into the e-skin’s ability to differentiate between texture,

shape, and stiffness variations, thus serving as a foundational

dataset.

1) Wave objects: The wave objects are characterized by

three primary parameters: amplitude, spatial frequency, and

stiffness. To create the surface of the wave objects, we applied

a bandpass filter to a white noise image centred around one of

three spatial frequencies {10/m, 30/m, 50/m} with a bandwidth

of 5/m. Using filtered noise allowed us to compensate for

the limited number of discrete variations available for each

parameter, introducing subtle deviations and a wider variety of

surface characteristics. This method provided a more diverse

representation of partially overlapping spatial frequencies,

which helped incorporate intermediate features and reduce

the rigidity of parameter categorization. The amplitude of the

waves was controlled by scaling the filtered and normalized

surface at three levels {5,10,20}mm. Each generated surface

was mirrored and 3D printed to create molds for fabricating

the object in silicone. The stiffness of the wave objects varied

based on the materials used {Ecoflex 00-10, Ecoflex 00-50,

rigid PLA}, which have specific Shore hardness values.

B. Interaction Protocol

To create a rich dataset of mechanical interactions, we used

movements combining translation and rotational motion of the

e-skin on the object’s surface. The robotic arm was controlled
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Fig. 4: Experimental setup to evaluate the e-skin. The e-skin is mounted on the end-effector of a Kinova robotic arm (a), which is
programmed to move the e-skin on predefined trajectories (b) in order to interact with tested objects (c).

using a twist controller that regulated the end-effector’s linear

and angular velocities as illustrated in Fig. 4b:

• Pressing: In the pressing interaction, the robotic arm

moves along the z-axis with

z(t) = A cos (2πωt+ π) (1)

This motion enables precise measurement of the deforma-

tion and depth properties of rigid and compliant materials.

By varying the amplitude and frequency of the sinusoidal

motion, we could simulate different force profiles and

characterize the response of the e-skin under various

pressure conditions.

• Precession: In this protocol, the end effector and elec-

tronic skin rotate around the x- and y-axes, allowing

interaction with different areas of the object’s surface.

This method is especially effective for evaluating complex

geometrical features, such as concave or convex regions,

by providing haptic feedback from multiple angles of

interaction, represented as roll (α) and pitch (β) angles:

α(t) = A sin
(
2πωt+

π

2

)
, β(t) = A sin (2πωt) (2)

• Slipping: During the slipping interaction, the e-skin exe-

cutes a controlled sequence of translational and rotational

motions to simulate natural human texture exploration.

It first slides linearly along the X and then Y axes,

followed by a circular twisting motion around the Z axis.

This interaction allows the e-skin to gather detailed data

on surface roughness, texture, and friction, providing a

more comprehensive dataset for analyzing the physical

surface properties of various materials. The interaction is

combining translation xy and rotation θ:

xy(t) = A sin (2πωt) , θ(t) = A sin (2πωt) (3)

where the amplitude parameters A and the frequency param-

eters ω are specific to each of the above movement types.

We performed an initial experimental evaluation to determine

the range of the parameters, taking into account the robot

controller frequency and sensor saturation. Within this range,

16 values were uniformly sampled to perform the interactive

actions using the robotic setup and the objects. Combining

these actions and parameter variations resulted in a rich dataset

well-suited for evaluating the e-skin’s performance across a

broad spectrum of interaction scenarios. The parameters for

each trial are detailed in Table I.

Trials
Pressing Precession Slipping

Apress (mm) ω (Hz) Aangle ω (Hz) Aslide (mm) Aθ(°) ω (Hz)
1 2 0.2 3° 0.2 2 3° 0.2
2 2 0.4 3° 0.4 2 3° 0.4
3 2 0.6 3° 0.6 2 3° 0.6
4 2 0.8 3° 0.8 2 3° 0.8
5 4 0.2 4° 0.2 4 4° 0.2
6 4 0.4 4° 0.4 4 4° 0.4
7 4 0.6 4° 0.6 4 4° 0.6
8 4 0.8 4° 0.8 4 4° 0.8
9 6 0.2 5° 0.2 6 5° 0.2

10 6 0.4 5° 0.4 6 5° 0.4
11 6 0.6 5° 0.6 6 5° 0.6
12 6 0.8 5° 0.8 6 5° 0.8
13 6 0.2 6° 0.2 8 6° 0.2
14 8 0.4 6° 0.4 8 6° 0.4
15 8 0.6 6° 0.6 8 6° 0.6
16 8 0.8 6° 0.8 8 6° 0.8

TABLE I: Action parameters for the experiment’s 16 trials.

C. Data collection and preprocessing

Data collection started with a 5 s calibration phase, during

which the robotic arm and e-skin remained stationary in

contact with the object to collect baseline data for noise

filtering and sensor correction. For each object, 16 trials

were performed across the three interaction protocols, with

key parameters varied to ensure diversity. Force and torque

data were captured using the ATI Nano 17 sensor at 1 kHz,

which was downsampled to 100 Hz and synchronized with

the end-effector pose data using a mean filter to reduce

Gaussian-like noise. The e-skin system comprised two 16×16

FSR layers and a 4×4×3 accelerometer layer recorded at a

sampling frequency of 700 Hz. After recording, the data for
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each modality were normalized to [–1, 1] using their respective

minimum and maximum values in all trials to analyze the

response of the e-skin in diverse interaction scenarios.

IV. RESULTS

We evaluated our e-skin implementation by analyzing how

various skin types, sensor layers, and sampling rates affect

force and object parameter estimation.

A. Normal and shear force estimation

We evaluated the e-skin’s ability to estimate normal and

shear forces. Accurate shear force estimation is crucial for

haptic sensing, enabling robots to detect lateral forces, assess

friction, and detect slip during grasping, enhancing object

manipulation and adaptability in dynamic environments. While

FSRs were expected to capture normal forces effectively,

shear force estimation was not inherently guaranteed and thus

required validation. This first evaluation focused solely on the

FSR array layers, excluding accelerometer data.

To capture the spatial and temporal dynamics of the FSR

arrays, we employed a CNN-LSTM architecture [8], [9]. CNN

extracted spatial features, while LSTM modeled temporal

dependencies. Given the relatively slow variations in normal

and shear forces, we downsampled the e-skin and ground-

truth F/T data to 20 Hz, reducing the sequence length and

sensor noise. A sliding window approach was adopted; shorter

windows produced outputs more frequently, while longer win-

dows considered more data to improve estimation accuracy.

An ablation study was conducted using the same model

architecture, examining the following factors to determine their

impact on force estimation accuracy:

• Skin type: Ecoflex 00-31 or DragonSkin 30.

• Number of FSR layers: Top only, Bottom only, or both

Top + Bottom layers.

• Number of samples per sequence: 5, 10, 20 or 40 samples.

Fig. 3a illustrates the shear and normal force estimations

using the two FSR array layers with an Ecoflex 00-31 silicone

skin of an exemplary observation. Fig. 3b and Table II present

the estimation accuracy for different design parameters, high-

lighting key findings on e-skin’s force estimation. For clarity,

we also presented the results in Table II.

Axis Layers Skin type
Normalized mean error (N) Mean error (N)

Number samples Number samples
5 10 20 40 5 10 20 40

X

Top
Ecoflex 00-31 0.035 0.032 0.029 0.029 0.489 0.448 0.410 0.408
DragonSkin 30 0.036 0.031 0.030 0.027 0.504 0.437 0.429 0.386

Bot
Ecoflex 00-31 0.040 0.037 0.034 0.032 0.551 0.518 0.469 0.445
DragonSkin 30 0.042 0.040 0.035 0.032 0.595 0.558 0.501 0.449

Top+Bot
Ecoflex 00-31 0.033 0.030 0.028 0.027 0.465 0.412 0.394 0.375
DragonSkin 30 0.034 0.030 0.026 0.026 0.486 0.425 0.374 0.373

Y

Top
Ecoflex 00-31 0.028 0.027 0.023 0.023 0.481 0.464 0.401 0.392
DragonSkin 30 0.035 0.031 0.030 0.028 0.481 0.427 0.414 0.383

Bot
Ecoflex 00-31 0.032 0.030 0.029 0.027 0.548 0.520 0.495 0.459
DragonSkin 30 0.041 0.039 0.035 0.033 0.568 0.542 0.478 0.449

Top+Bot
Ecoflex 00-31 0.027 0.025 0.023 0.023 0.460 0.427 0.400 0.385
DragonSkin 30 0.032 0.029 0.028 0.027 0.442 0.402 0.385 0.370

Z

Top
Ecoflex 00-31 0.030 0.028 0.024 0.025 2.280 2.136 1.876 1.898
DragonSkin 30 0.028 0.024 0.024 0.023 2.235 1.960 1.915 1.827

Bot
Ecoflex 00-31 0.033 0.032 0.030 0.029 2.544 2.460 2.285 2.212
DragonSkin 30 0.032 0.031 0.028 0.026 2.604 2.460 2.233 2.092

Top+Bot
Ecoflex 00-31 0.028 0.025 0.025 0.023 2.147 1.948 1.910 1.797
DragonSkin 30 0.025 0.024 0.022 0.021 2.048 1.899 1.745 1.719

TABLE II: Force estimation accuracy for different skin types,
number of FSR layers, and number of samples per sequence.

The results show that Ecoflex 00-31 consistently surpassed

DragonSkin 30 in accuracy. The two-layer FSR structure was

designed primarily to capture shear forces through differential

deformation between layers. While there was no significant

difference in normal and shear force estimation, using the

data of the two FSR layers (Top + Bottom) provided the

most accurate force estimations, demonstrating the advantage

of multi-layer data integration in capturing complex forces like

shear from lateral movement. Furthermore, increasing samples

per sequence improved accuracy, with 40 samples yielding

optimal results, highlighting the role of temporal resolution

in force estimation reliability. The model achieved a mean

difference of about 1.7 N for normal and 0.4 N for shear

forces. This difference is due to the different ranges of forces

encountered on each axis. Normalization to the range [0,1] on

each axis resulted in a mean error of 2% for normal and 3% for

shear forces, showing the e-skin’s effectiveness in quantifying

forces in haptic interactions.

B. Wave object parameter estimation

A potential strength of our e-skin implementation is its

multi-modal sensing capabilities, utilizing FSR for high-

resolution force and static observation and accelerometers for

detecting dynamic interactions and vibrations. We investigated

the role of each modality and variations in e-skin mechanical

properties for object recognition. To leverage these signals,

we designed a multi-head, multi-modal network (see Fig. 5)

where FSR and accelerometer data are processed separately
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a) b)

Fig. 6: Classification results for all combinations of sensor configurations, material types, actions, and dimensions. The figure displays
the ranking of all e-skin configurations based on the mean accuracy for a given dimension (spatial frequency, amplitude, stiffness)
(a) and a given action (pressing, precession, slipping) (b).

through 3D convolutional layers, extracting spatial and tem-

poral features. The end-effector’s position and orientation are

encoded via a fully connected network (FCN), and all features

are concatenated and passed through FC layers to predict

object properties—spatial frequency, amplitude, and stiffness.

A significant challenge in multi-modal integration is the differ-

ing temporal characteristics: FSR data is slow-varying, while

accelerometers capture rapid fluctuations. We transformed

accelerometer data into the spectral domain using short-time

Fourier transforms to preserve dynamic information, align-

ing it with FSR data segments. This approach maintained

high-frequency details while ensuring compatibility across

modalities. We systematically analyzed how different FSR

and accelerometer combinations impact objects’ parameters

estimation through an ablation study, evaluating the following

factors:

• Skin type: Ecoflex 00-31 or DragonSkin 30.

• Number of FSR layers: None, Top only, Bottom only, or

both Top + Bottom layers.

• Number of accelerometer layers: With or without ac-

celerometer layers.

• Number of samples per sequence: 5, 10, or 20 samples.

This comprehensive evaluation enabled us to identify the

optimal combination of sensor modalities and configurations

for accurately predicting object properties, thereby maximizing

the potential of the e-skin’s multi-modal design. The results,

illustrated in Fig. 6, offer a detailed analysis of how various

sensor configurations and types of actions influence prediction

accuracy for spatial frequency, amplitude, and stiffness. The

regression model was trained to output a prediction of the

central spatial frequency, amplitude, and stiffness of the object.

We observed that the number of samples per sequence (5,

10, or 20) had a negligible effect on prediction accuracy and

ranking. Therefore, the results presented in Fig. 6 reflect the

average performance across these sample configurations.

DISCUSSION

This study introduced an e-skin with layered silicone encap-

sulation, integrated FSR arrays, and accelerometer arrays. The

layered silicone encapsulation enhances compliance and me-

chanical robustness, allowing for reliable interactions with var-

ious surfaces while maintaining durability. The eskin was used

to record more than 1000 1-minute-long trials, demonstrating

its robustness and reliability in continuous use. The system’s

implementation balances high temporal resolution (700 Hz for

accelerometer layers) and spatial resolution (32 units/cm² for

the FSR arrays), enabling it to capture static forces and dy-

namic interactions like vibrations. These features outperform

many existing systems that either lack multi-modal integration

or are limited in scalability and modular adaptability, as

analyzed in Table III. A key advantage of our e-skin design is

its ability to directly measure normal and shear forces directly,

eliminating the need for external sensors and enabling cost-

effective, integrated haptic sensing.

The use of e-skin in industrial applications is often limited

by wiring complexity, as increasing the number of sensors

typically leads to excessive cabling, making integration cum-

bersome and preventing the system from scaling properly.

To address this, we focused on efficient multiplexing and
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Implementation
name Robustness Flexibility Multimodality Multi

nodal
Spatial

resolution
Temporal
resolution Modularity Scalability Ease of

fabrication

Human skin • Immune defence
• Self-healing

Highly flexible
• Normal/shear force
• Vibration
• Temperature

241 u./cm2

on fingertips
400 Hz N/A N/A N/A

Organic
transistors [10]

Sensitive, limited
durability

Highly flexible Normal force × 0.2u./cm2 1KHz No details No details
Thin-film
fabrication

Piezoelectric
nanowire [6]

Stable under
continuous use

Highly flexible Vital signs × 1u./cm2 2Hz No details Self-powered
Nanopore
fabrication

Polymer-
waveguide [5]

Robust to
bending

Thin-film Normal force
• 40u./cm2

• 3x7 array
16Hz No details No details

Polymer
waveguide

Large-Area
sensor [11]

Robust to
deformation

Highly flexible Normal force
• 16u./cm2

• 32x32 array
No details No details

• Maybe large-area
• Electronic
not detailed

Organic nano
fabrication

FSR array [12] • Plastic socket • Rigid Normal force
• 1u./cm2

• 32 FSR grid
20Hz Interchangeable No details 3D printing

Capacitive
array [13]

• Silicone
encapsulation

• Flexible
• Stretchable

Normal force
• 4u./cm2

• 8x8 array
80Hz

Customisable
Size

LCR circuitry
maybe difficult
to scale

Direct filament
casting

BioTac [4] Limited durability Rigid finger
• Normal/shear force
• Vibration
• Temperature

× N/A 100Hz
Self-contained
module

Complex
multi-layers

Precision
fabrication

GelSlim [14] Limited durability
Rigid sensorised
layers

• Normal/shear force
High-resolution
optical sensing

30Hz No details
High computational
complexity

Precision
fabrication

DIGIT [15] Abrasion-resistant
Rigid sensorised
layers

• Normal/shear force
High-resolution
optical sensing

60Hz No details
High computational
complexity

Precision
fabrication

ReSkin [16]
• Durable
• Reusable coating

Rigid sensorised
layers

• Normal/shear force 2.5 u./cm2 400Hz Interchangeable Highly scalable
Simplified
fabrication

Our e-skin Silicone
encapsulation

Flexible
• Normal/shear force
• Vibration

• 32 u./cm2

• 2x 16x16 FSR
• 4x4 accelero.

700Hz
Interchangeable
sensor layers

Highly scalable
using modular
multiplexing

• 3D printing
• Silicone
moulding

TABLE III: Comparison of tactile sensor and e-skin features across different implementations.

sequential reading to minimize the number of wires per unit.

The two FSR layers are interfaced using only seven wires for

a total of 512 sensing units. The exact mechanism can be

daisy-chained, enabling expansion where the required wires

follow a scalable pattern of 5+N wires for N×256 FSR sensing

units. A similar approach was used for the accelerometer array,

significantly reducing wiring overhead. Since each sensor

consumes less than 15 μA of power, scaling the system remains

feasible without significant increases in power consumption.

The modular design of the e-skin allowed us to evaluate

different skin types rapidly. Our results demonstrate that

the Shore hardness of the silicone layer significantly affects

haptic sensing. In particular, using a softer layer (Ecoflex

00-31) improved force and object property estimation, likely

due to better compliance and damping, enhancing signal

transmission to the FSR arrays. The integration of high-

frequency accelerometer data is critical in capturing subtle

dynamic interactions, mirroring the principles of multi-sensory

integration found in human skin. This was demonstrated from

our experiments, as multi-modal haptic sensing improved the

ability to capture fine-grained mechanical properties such as

spatial frequency, amplitude, and stiffness of the wave object

dataset.

A notable limitation of our current implementation is it’s

overall size and rigidness, which is not optimal and might

not be suitable for all applications. However, the modular

design allows for easy scaling and adaptation to various frame

size and material configurations. Similarly, the scale of the

objects used in our experiments was limited to surface spatial

frequencies way below the spatial resolution of the e-skin,

ensuring no aliasing effects. This setup could later be tested

with smaller and sharper objects to evaluate the possibility

of leveraging the e-skin’s multi-modal sensing capabilities for

more complex object properties.

In the future, we would like to explore more granular

control over silicone stiffness to understand its role in haptic

perception better. Additionally, incorporating ridges/structures

in silicone layers (as inspired by the human fingertip skin)

will also be interesting to amplify vibrations and further

force transmission. Understanding the mechanical properties

of e-skin is essential for improving robotic perception and

manipulation, as well as transparent human-robot interactions.

In general, the scalability and modularity of our e-skin design

facilitate the integration of additional sensing modalities and

functionalities, making it adaptable for diverse applications.

We are currently working on the development of custom FSRs

with flexible PCBs to offer greater design freedom, making

these sensors adaptable to large areas and curved surfaces

while maintaining accessibility and practicality for diverse

applications.

CONCLUSION

We have developed a modular e-skin concept based on

a layered silicone encapsulation and various sensory layers,

demonstrated by an implementation with integrated FSR ar-

rays and accelerometer arrays. Evaluations with controlled

robot–object interactions showed accurate estimation of nor-

mal and shear forces and identification of object surface

parameters. The design’s modularity allowed the testing of

different silicone materials, sensor arrangements, and layer

configurations systematically.

The presented hardware and open documentation provide a

reproducible approach to investigating haptic sensing mecha-

nisms. The layout, electronics, and fabrication pipeline enable

straightforward scaling to larger sensing areas, higher sensor

densities or other sensing modalities. By combining modu-

larity, compliance, and multi-modal sensing capabilities, our

“hardware model” of the e-skin provides a suitable platform
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for a large range of haptic sensing applications, from prosthet-

ics to robotics.
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