
 

Abstract-- This paper proposes a virtual space model of 
IPMSMs with nonlinear characteristics to improve torque 
control performances. The nonlinear torque including a 
reluctance component, magnetic saturation, spatial 
harmonics, and variation of the magnetic energy degrade 
control performances. To solve this problem, we propose a 
virtual space model, which is obtained by transforming 
current and voltage spaces with virtual vectors. The virtual 
vectors are defined by gradients of a torque map on the d-q 
current plane of IPMSMs. The proposed virtual space is 
suitable for torque control because the basis vectors are 
based on the torque map. We applied the virtual space model 
to a sensorless torque feedback control system to confirm the 
validity of the proposed model. As a result of a simulation, it 
is verified that the maximum torque response under a voltage 
limitation and the Maximum Torque Per Ampere control are 
achieved by the virtual space model. 
 

Index Terms-- Maximum Torque Control Reference 
Frame, Torque Feedback Control, Torque Gradient, Torque 
Map 

I.  INTRODUCTION 
In recent years, Interior Permanent Magnet 

Synchronous Motors (IPMSMs) have attracted attentions 
for their high-torque control performances and high-
efficiency in various applications. IPMSMs have nonlinear 
torque characteristics due to saliency, magnetic saturation, 
spatial harmonics, and variation of magnetic energy, while 
they are designed for high-torque density and wide-range 
drives. Their nonlinear characteristics make the control 
models to realize high-torque control performances 
complicated. An accurate torque equation is needed to 
achieve the required control performances [1]. Various 
strategies based on Look-up tables [2] have been studied 
to solve this problem. To analyze the nonlinear torque 
characteristics including magnetic saturation, spatial 
harmonics, and variation of the magnetic energy, a torque-
sensorless identification of IPMSM torque map is 
proposed in the reference [3]. According to the study, the 
torque map can be reconstructed from torque gradients on 
the d-q current plane. Through the gradient theorem, the 
torque map can be experimentally obtained without a 
torque sensor. Once a highly accurate torque map is 
obtained, it is possible to achieve a torque sensorless 
feedback control. 

In reference [4], a control method for achieving 
maximum torque response based on Maximum Torque 
Control Reference Frame (f-t axes) is introduced. The f-t 

axes are defined by a direction parallel to the constant 
torque curves in the d-q current plane. While the current 
change in the t-axis achieves optimal torque response, the 
phase angle is influenced by motor parameters. Thus, a 
precise determination method for the phase angle becomes 
crucial in ensuring torque control performance. 
Additionally, it should be noted that the responsiveness 
cannot be adjusted during voltage saturation since it serves 
as a voltage limiter. 

In this paper, we extend the concept of the Maximum 
Torque Control Reference Frame (f-t axes) to a virtual 
space model in both current and voltage spaces. First, basis 
vectors for the virtual space are derived by torque gradients 
and a virtual flux in the current space. Since the torque 
gradients are provided by a multivariable torque map, the 
proposed virtual model can be applied for nonlinear 
motors with a parameter variation. Then, we introduce a 
new definition of the Maximum Torque Control Reference 
Frame in the voltage space. Basis vectors for the voltage 
space are derived by transforming the virtual flux vector 
with an inductance matrix. The proposed model is then 
applied to a torque sensorless feedback control system to 
reasonably achieve a maximum torque response under 
current and voltage magnitude limitations. The f-t axes for 
voltage space are suitable for torque feedback control 
because time derivative of torque is formularized by the 
virtual vectors in the voltage space. The proposed torque 
feedback controllers can adjust the responsiveness of the f-
axis current and the torque control independently. 

II.  VIRTUAL SPACE MODEL BASED ON TORQUE 
GRADIENTS 

A.  Torque Gradient on Current Vector Space 
First, we generally express the magnitude of motor 

torque per pole-pairs of IPMSMs as a function of two 
independent variables which are d- and q- axis currents, 
𝑖! and 𝑖". 

𝜏 = 𝜏$𝑖! , 𝑖"& (1) 
Although the equation (1) supposes two dimensions of 
the d-q axis currents in this paper, a general torque map 
can be extended to a multivariable function including a 
rotor position to express space harmonics. 

Then, the gradient torque on the d-q current plane can 
be expressed as Eq. (2). 

𝜵𝜏 =
𝜕𝜏
𝜕𝑖!

𝒖𝒅 +
𝜕𝜏
𝜕𝑖"

𝒖𝒒 (2) 
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Here, 𝒖𝒅  and 𝒖𝒒  are unit basis vectors in the d-q 
coordinate system. As shown in Fig.1, the torque gradients 
are the variable vectors depending on the d-q currents. 

Now, we define a virtual magnetic flux vector 𝜳𝒎 as 
Eq. (3) since a physical dimension of torque/current is 
magnetic flux. 

𝜳𝒎 = 𝑱&𝜵𝜏 (3) 
Here, the matrix 𝑱  is the 90-degree rotation matrix as 
shown in Eq. (4). 

𝑱 = 20 −1
1 0 5 (4) 

As shown in Fig. 2(a), we define bases of the virtual 
space to transform the current vectors by unit-direction 
vectors, 𝒖𝒇 and 𝒖𝒕, in the direction of the virtual flux 
𝜳𝒎 and the torque gradient 𝜵𝜏, respectively. That is, the 

 

 
 

Fig. 1.  An example of torque gradients on a current space. 
 

 
(a) Current space 

 

 
(b) Voltage space 

 
Fig. 2.  Maximum Torque Control Reference Frames. 

basis vectors for the current space can be expressed as Eq. 
(5). 

𝒖𝒇 =
𝜳𝒎

|𝜳𝒎|
	 , 𝒖𝒕 =

𝜵𝜏
|𝜵𝜏|

(5) 

The Maximum Torque Control Reference Frame [4], 
which is denoted as f-t axes, can be defined by these basis 
vectors because the f-axis is aligned parallel to the constant 
torque curves on the d-q current space. Figure 3 shows an 
example of the mapping of torque from the d-q space to 
the f-t space. The f-t axis currents are calculated by inner 
products of the d-q axis current vectors 𝒊𝒅𝒒 and the basis 
vectors 𝒖𝒇, 𝒖𝒕 as follows: 

𝑖) = 𝒖𝒇 ∙ 𝒊𝒅𝒒	, 𝑖* = 𝒖𝒕 ∙ 𝒊𝒅𝒒. (6) 
It is found that the Maximum Torque Per Ampere (MTPA) 
current locus is transformed onto the t-axis, since the f-axis 
current component is zero when the MTPA control is 
achieved. 

B.  Maximum Torque Control Reference Frame on 
Voltage Space 

Generally, when a voltage source inverter is used to 
control an IPMSM, the manipulated variable is the voltage. 
Therefore, in this section, we consider the Maximum 
Torque Control Reference Frame in the voltage space in 
order to deal with the voltage manipulated variable 
saturation problem. First, the d-q voltage vector is divided 
into two components, which are the terms of the steady 
state 𝒗𝟎 and the transient state 𝒗𝟏 as Eq. (7). 
 

 
 

(a) on the d-q current plane 
 

 
 

(b) on the f-t current plane 
 

Fig. 3.  Mapping of torque on current planes. 



 

𝒗𝒅𝒒 = 𝒗𝟎 + 𝒗𝟏 = 𝒗𝟎 + 𝑝𝑳𝒅𝒒𝒊𝒅𝒒 (7) 
Here, according to an inductance model, the transient 
voltage 𝑣- is supposed to be generated by a change of the 
current vector with time. The “p” is the differential 
operator with respect to time. The inductance matrix 𝑳𝒅𝒒 
includes cross-coupling components as follows: 

𝑳𝒅𝒒 = C
𝐿! 𝐿!"
𝐿"! 𝐿"

E . (8) 

When a current vector changes with time, time 
derivative of torque is expressed as follows: 

𝑝𝜏 =
𝑑𝜏
𝑑𝑡 =

(𝜵𝜏) ∙ $𝑝𝒊𝒅𝒒& (9) 

The time derivative of the torque in Eq. (9) can be 
transformed using the virtual magnetic flux 𝜳𝒎  in Eq. 
(3) and the transient voltage 𝒗𝟏 in Eq. (7), resulting in Eq. 
(10). 

𝑝𝜏 = J𝑱
𝑳𝒅𝒒
K𝑳𝒅𝒒K

𝜳𝒎L ∙ 𝒗𝟏 = (𝑱𝚪𝒎) ∙ 𝒗𝟏 (10) 

Here, the 𝚪𝒎  is a virtual vector on the voltage space, 
which is defined by the virtual magnetic flux 𝜳𝒎 and the 
inductance matrix, as shown in Eq. (11). 

𝚪𝒎 =
𝑳𝒅𝒒
K𝑳𝒅𝒒K

𝜳𝒎 (11) 

As shown in Fig. 2(b), the f-t axes in the voltage space 
are defined on the basis of the unit direction vector of the 
virtual vector 𝚪𝒎 and its orthogonal vector $𝒖𝒇, 𝒖𝒕& as 
shown in Eq. (12). 

𝒖𝒇 =
𝚪𝒎
|𝚪𝒎|

	 , 𝒖𝒕 = 𝑱𝒖𝒇 (12) 

That is, by mapping the current space using the inductance 
matrix in Eq. (8), the f-t axes on the voltage space can be 
obtained. Assuming a diagonal inductance matrix with no 
cross-coupling for sake of simplicity, this transformation 
matrix scales the aspect ratio of the coordinates by the 
saliency ratio 𝐿" 𝐿!⁄ . The f-t axis voltages are calculated 
by inner products of the d-q axis voltage vectors 𝒗𝒅𝒒 and 
the basis vectors for voltage space in Eq. (12) as follows: 

𝑣) = 𝒖𝒇 ∙ 𝒗𝒅𝒒	, 𝑣* = 𝒖𝒕 ∙ 𝒗𝒅𝒒. (13) 

C.  Torque Feedback Control System for the Virtual 
Space Model 

To design the torque feedback control based on the Eq. 
(10), a plant model in the virtual space is constructed as 
shown in Fig. 4. First, the voltage vector is divided into 
two components, which are the steady state 𝒗𝟎 and the 
transient state 𝒗𝟏. Second, the basis vectors in the voltage 
space are set as shown in Eq. (12). Third, the t-axis 
components for 𝒗𝟎 and 𝒗𝟏 are calculated by the inner 
 

 
 

Fig. 4.  Torque feedback control system. 
 

product with 𝒖𝒕. Then, according to Eq. (10), the plant 
model can be expressed by Eq. (14). 

𝑝𝜏 = |𝚪𝒎|𝑣-* (14) 
Here, 𝑣-* is the t-axis component of the 𝒗𝟏 vector. 

As shown in Fig. 4, the t-axis components of the voltage 
vectors 𝒗𝟎  and 𝒗𝟏  can be regarded as an input and a 
disturbance to the plant, respectively. Therefore, putting 
the proportional control with the disturbance 
compensation for the torque feedback controller at the 
input of the plant, the closed-loop transfer function become 
a simple first-order lag system. The torque control is 
realized by only the t-axis voltage independently from the 
f-axis component in the proposed control system. 

III.  SIMULATION 

A.  Simulation Conditions 
As shown in Fig. 5, we constructed a Maximum Torque 

Control system in MATLAB/Simulink to confirm the 
validity of the proposed model. The torque step response 
under the voltage limit was tested and evaluated the 
response time. The tested machine is an IPMSM of 500 
[W]. The resistance, EMF constant, d- and q-axis 
inductances are 0.55 [Ω], 0.104 [V/(rad/s)], 4.15 [mH], and 
16.74 [mH], respectively. The 𝑓 -axis current and the 
torque control gains are 5 [rad/s] and 10,000 [rad/s], 
respectively. The torque command is step-up to 0.5 [Nm] 
at 1 [ms] from the simulation start. The torque control is 
set to high gain to evaluate the torque response under the 
voltage saturation. The limit voltage magnitude is set to 
100 [V]. The magnetic saturation and cross-coupling 
inductances are ignored in this simulation. The rotor speed 
is set to the constant at 1,000 [min-1]. 

B.  Simulation Results 
Figures 6, 7, and 8 show the simulation results of a step 

torque response under voltage saturation. The torque is 
linearly rising to the command of 0.5 [Nm] without 
overshoot. The d-q axis currents are gradually converged 
toward the MTPA operating point after settling the torque. 
The voltage amplitude is limited within the voltage limit 
while the torque is rising. From the result as shown in Fig. 
7(b), it was confirmed that the t-axis voltage component 
preferentially used to rapidly increase the torque. As 
shown in Fig. 8, since the control gain for the f-axis loop 
is set low enough, the f-axis current gradually converged 
to zero for the MTPA control after the torque has settled. 
 

 
 

Fig. 5.  Simulation control block. 
 



 

 
(a) Torque waveforms 

 

 
(b) d-q current waveforms 

 
Fig. 6.  Simulation results of torque step response. 

 

   
(a) on the d-q voltage plane     (b) on the f-t voltage plane 

 
Fig. 7.  Voltage loci. 

 

 
(a) on the d-q current plane     (b) on the f-t current plane 

 
Fig. 8.  Current loci. 

 
The transient f-axis current in the negative direction helps 
to improve the torque response in terms of the field 
weakening effect, while the MTPA control is suitable for 
efficiency at steady state. We confirmed that the proposed 
method effectively achieves Maximum Torque Response 
and the MTPA controls. 

IV.  CONCLUSIONS 
This paper proposed a virtual space model for IPMSMs 

with nonlinear torque characteristics to improve the torque 
control performances. We introduced virtual vectors 
defined by torque gradients which are suitable for 
maximum torque controls. The validity of the proposed 

model was confirmed by simulations. The spatial 
harmonics will be considered, and the experimental 
verification with actual machines will be carried out in our 
future work. 
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